. Scientific Frontline

Tuesday, October 7, 2025

The hidden highways of the sky mapped

Photo Credit: Björn Malmhagen

High above us, the atmosphere is teeming with life. Birds, bats and insects share the airspace, but divide it into different lanes of traffic. New research from Lund University in Sweden reveals how the atmosphere is an ecosystem, with complex ecological processes that affect how animals move between different altitude levels.

We often consider the air as simply a void – but it is in fact alive and vital. In a new study, researchers in Lund, the Netherlands and the USA introduce a framework for understanding the air as a habitat, just like a forest or ocean. The study highlights how environmental factors and interaction between species affect how animals are distributed in the aerial habitat.

“It concerns not only where animals fly, but also why. Wind, temperature and air pressure are factors, as is the location of other animals. It’s a dynamic environment that requires adaptation,” explains Cecilia Nilsson, researcher in biology at Lund University.

Easter Island’s statues actually “walked” – and physics backs it up

A research team including Binghamton University archaeologist Carl Lipo has confirmed via 3D modeling and field experiments that the ancient people of Rapa Nui "walked" the iconic moai statues.
 Photo Credit: Carl Lipo

For years, researchers have puzzled over how the ancient people of Rapa Nui did the seemingly impossible and moved their iconic moai statues. Using a combination of physics, 3D modeling and on-the-ground experiments, a team including faculty at Binghamton University, State University of New York, has confirmed that the statues actually walked – with a little rope and remarkably few people.

Studying nearly 1,000 moai statues, Binghamton University Professor of Anthropology Carl Lipo and the University of Arizona’s Terry Hunt found that the people of Rapa Nui likely used rope and “walked” the giant statues in a zig-zag motion along carefully designed roads.

Volcanic ash may enhance phytoplankton growth in the ocean over 100 km away

Nishinoshima Island, located in the Ogasawara Islands of Japan, is home to an active volcano. Ash from volcanic eruptions there in 2020 could have led to a temporary surge in phytoplankton levels in the seawater 130 km away.
Photo Credit: Ogasawara Village Tourism Bureau

A research group in Japan has suggested that ash released from volcanic eruptions on Nishinoshima Island—part of Japan's Ogasawara Islands—led to a temporary surge in phytoplankton levels in the seawater around Mukojima Island, which is located 130 km northeast of Nishinoshima and is also part of the Ogasawara Islands.

Mukojima lies within the subtropical gyre, a region known for low nutrient and low chlorophyll conditions. The study indicates that ash from the Nishinoshima eruptions was transported by wind and ocean currents to the waters around Mukojima, serving as a nutrient source for phytoplankton growth in that area.

Animations of wildlife tracking data help explore animal movements

Researchers found that understanding environmental context is key to interpreting future animal patterns.
Photo Credit: Nick Fewings

Researchers have developed new software for exploring and communicating animal movements in the wild. 

This suite of open-source tools, called ECODATA, was designed to support the analysis and visualization of complex datasets, as valuable observations about animal movement are often made by analyzing massive amounts of wildlife tracking data. 

Their tool accomplishes this by creating animations that help ecologists study animal movement, such as how extreme weather conditions or seasonal vegetation growth might influence a species’ normal activities, said Gil Bohrer, co-author of the study and a professor in civil engineering and geodetic engineering at The Ohio State University.

“We’re not creating new information, but we are taking data that ecologists typically find hard to utilize and making it easy and accessible,” said Bohrer. “This can help users understand an ecosystem and quickly identify what’s going on, or test a good hypothesis they have.”

Cascadia and San Andreas faults may be seismically linked

Chris Goldfinger
Photo Credit: Courtesy of Oregon State University

Two fault systems on North America’s West Coast – the Cascadia subduction zone and the San Andreas fault – may be synchronized, with earthquakes on one fault potentially triggering seismic events on the other, a new study.

“We’re used to hearing the ‘Big One’ – Cascadia – being this catastrophic huge thing,” said Chris Goldfinger Link is external, a marine geologist at Oregon State University and lead author of the study. “It turns out it’s not the worst-case scenario.”

Goldfinger and a team of researchers drilled deep-sea sediment cores representing 3,100 years of geologic history, and analyzed layers known as turbidites that are deposited by underwater landslides often triggered by earthquakes. They compared turbidite layers in cores from both fault systems and found similarities in timing and structure, suggesting the seismic synchronization between the faults.

In most cases, it’s difficult to determine the time separation between the Cascadia subduction zone and northern San Andreas fault ruptures, but Goldfinger said there are three instances in the past 1,500 years, including a most recent one from 1700, when the researchers believe the ruptures were just minutes to hours apart.

Clinical trial marks key milestone in fight against antibiotic resistance

Infections with antibiotic-resistant bacteria cause a significant burden of disease worldwide.
Photo Credit: Scientific Frontline / AI Generated

An international clinical trial, led by The University of Queensland, has been hailed as a significant step forward in the global challenge of antibiotic resistance.

UQ researchers have led the first randomized trial across 6 countries to examine a new antibiotic, cefiderocol, in the treatment of life-threatening, drug-resistant infections.

Associate Professor Patrick Harris, of UQ’s Centre for Clinical Research, said the drug was found to be effective and safe in treating bloodstream infections.

"The study is the first randomized controlled trial to specifically examine the use of cefiderocol in bloodstream infections and sepsis," he said.

“With increasing global antimicrobial resistance, there is a need for the development of new antibiotics.’’

DNA nanospring measures cellular motor power

Experimental design for the force measurement of KIF1A.
An inert protein known as KIF5B serves as the anchor from which KIF1A pulls the nanospring. As with more familiar springs, the extended length correlates with the force being applied. But in this case, the DNA nanospring is also labeled with fluorescent molecules which give away how far it stretches to make visualization of KIF1A’s motile strength possible.
Image Credit: ©2025 Hayashi et al
(CC BY-ND 4.0)

Cells all require the transport of materials to maintain their function. In nerve cells, a tiny motor made of protein called KIF1A is responsible for that. Mutations in this protein can lead to neurological disorders, including difficulties in walking, intellectual impairment and nerve degradation. It’s known that mutations in KIF1A also result in a weakened motor performance, but this has been difficult to measure so far. Researchers including those from the University of Tokyo and the National Institute of Information and Communications Technology (NICT) in Japan have measured changes in the force of KIF1A using a nanospring, a tiny, coiled structure, made of DNA which could lead to improved diagnosis of diseases related to the protein’s mutations.

Monday, October 6, 2025

We need a solar sail probe to detect space tornadoes earlier, more accurately

An artist’s rendering of the spacecraft in the SWIFT constellation stationed in a triangular pyramid formation between the sun and Earth. A solar sail allows the spacecraft at the pyramid’s tip to hold station beyond L1 without conventional fuel.
Image Credit: Steve Alvey, University of Michigan.

Spirals of solar wind can spin off larger solar eruptions and disrupt Earth’s magnetic field, yet they are too difficult to detect with our current single-location warning system, according to a new study from the University of Michigan.

But a constellation of spacecraft, including one that sails on sunlight, could help find the tornado-like features in time to protect equipment on Earth and in orbit.

The study results come from computer simulations of a massive cloud of plasma erupting from the sun and moving through the solar system. Because the simulation covers features that span distances three times Earth’s diameter down to thousands of miles, the researchers could determine how smaller, tornado-like spirals of plasma and magnetic field—called flux ropes—become concerning features in their own right.

Antibody discovered that blocks almost all known HIV variants in neutralization assays

Image Credit; Scientific Frontline / AI Generated

 A Cologne-led research team has discovered the antibody 04_A06, which neutralizes the human immunodeficiency virus (HIV) in almost all tested variants in vitro and even overcomes typical resistance mechanisms. The discovery potentially opens up new perspectives for the prevention and treatment of HIV infections.

An international research team led by the University of Cologne has discovered an antibody that could advance the fight against HIV. The newly identified antibody 04_A06 proved to be particularly effective in laboratory tests. It was able to neutralize 98.5 percent of more than 300 different HIV strains, making it one of the broadest antibodies against HIV identified. In experiments with humanized mice – animals whose immune system has been modified to resemble that of humans – 04_A06 permanently reduced the HIV viral load to undetectable levels. Most other HIV antibodies, in contrast, only achieve short-term effects in this animal model, as resistance develops quickly. The study ‘Profiling of HIV-1 elite neutralizer cohort reveals a CD4bs bNAb for HIV-1 prevention and therapy’ was published in Nature Immunology.

Lake Tahoe Algae Experiment Suggests Seasonal Shifts Ahead

UC Davis researchers conduct periphyton research at Lake Tahoe.
Photo Credit: Brandon Berry, UC Davis Tahoe Environmental Research Center

As the climate warms and nutrient inputs shift, algal communities in cool, clear mountain lakes like Lake Tahoe will likely experience seasonal changes, according to a study from the University of California, Davis. 

Periphyton, that fuzzy layer of attached algae covering the rocks as you step into the water, is a healthy and critical part of a lake’s food web. Periphyton blooms, however, signal changes that can degrade both water quality and a shoreline’s natural beauty.

Climate change is projected to increase global water temperatures by 1.8 to 7 degrees Fahrenheit by 2100. It’s also expected to increase nutrients to lake waters through increased runoff from higher intensity storms and more precipitation falling as rain rather than snow.

“A majority of lakes globally are warming as a result of climate change,” said lead author Nick Framsted, a master’s student in the UC Davis Environmental Science and Policy department and Tahoe Environmental Research Center when the study was conducted. “With their clear, cold waters, mountain lakes are exceptionally sensitive to changes in temperature and nutrients.”

Featured Article

What Is: The Human Microbiome

The Human Microbiome Image Credit: Scientific Frontline stock image The Invisible Organ The human body is not a sterile, solitary entity. It...

Top Viewed Articles