. Scientific Frontline

Wednesday, October 8, 2025

Researchers discover of a new type of diabetes in babies

Photo Credit: Rene Terp

Advanced DNA sequencing technologies and a new model of stem cell research has enabled an international team to discover a new type of diabetes in babies.

The University of Exeter Medical School worked with Université Libre de Bruxelles (ULB) in Belgium and other partners to establish that mutations in the TMEM167A gene are responsible for a rare form of neonatal diabetes.

Some babies develop diabetes before the age of six months. In over 85 per cent of cases this is due to genetic mutation in their DNA. Research led by the University of Exeter found that in six children with additional neurological disorders such as epilepsy and microcephaly identified alterations in a single gene: TMEM167A.

To understand its role, ULB researcher Professor Miriam Cnop’s team used stem cells differentiated into pancreatic beta cells and gene-editing techniques (CRISPR). They found that when the TMEM167A gene is altered, insulin-producing cells can no longer fulfill their role. They then activate stress mechanisms that lead to their death.

New hope for MS

Micah Feri (left) and Seema Tiwari-Woodruff.
Photo Credit: Courtesy of University of California, Riverside

Multiple sclerosis, or MS, is a chronic autoimmune disease affecting more than 2.9 million people worldwide. It occurs when the immune system mistakenly attacks the myelin sheath, the protective insulation around nerve fibers, causing disruption of nerve signals between the brain and body. Symptoms can include numbness, tingling, vision loss, and paralysis.

While current treatments can reduce inflammation, no therapies yet exist to protect neurons or restore the damaged myelin sheath. Researchers have now taken a major step forward in the development of such a therapy, supported by funding from the National Multiple Sclerosis Society. They have identified two compounds that could remyelinate damaged axons.

Published in the journal Scientific Reports, the research, led by Seema Tiwari-Woodruff, a professor of biomedical sciences at the University of California, Riverside, School of Medicine, and John Katzenellenbogen, a professor of chemistry at the University of Illinois Urbana-Champaign, or UIUC, was made possible through two National MS Society funding programs: a traditional investigator-initiated grant and the Society’s Fast Forward commercial accelerator program.

Raging winds on Mars

Images of dust devils, whirlwinds of dust that are blown across Mars’ surface.
Image Credit: ESA/TGO/CaSSIS for CaSSIS
(CC BY SA 3.0 IGO)

On Mars, dust devils and winds reach speeds of up to 160 km/h and are therefore faster than previously assumed: This shows a study by an international research team led by the University of Bern. The researchers analyzed images taken by the Bernese Mars camera CaSSIS and the stereo camera HRSC with the help of machine learning. The study provides a valuable data basis for a better understanding of atmospheric dynamics, which is important for better climate models and future Mars missions.

Despite the very thin Martian atmosphere, there are also winds on Mars that are central to the climate and the distribution of dust. The wind movements and the whirling up of dust also create so-called dust devils, rotating columns of dust and air that move across the surface. In images of Mars, the wind itself is invisible, but dust devils are clearly visible. Due to their movement, they are valuable indicators for researchers to determine the otherwise invisible winds.

Heatwaves at Sea May Force the Ocean to Release More CO2

Marine heatwaves are disrupting the ocean’s ability to store carbon
Image Credit: Scientific Frontline / AI generated

Heatwaves not only occur on land – they also occur in the oceans, causing ocean temperatures to stay warmer than normal for longer periods. Marine heatwaves can cover huge areas of the sea and have major effects on marine life, from plankton to reefs and whales.

Now, a new study shows that marine heatwaves may also affect how carbon is stored in the ocean.

The ocean is one of Earths biggest carbon sinks. It soaks up vast amounts of CO2 from the atmosphere, and in the surface water, algae and other photosynthetic microorganisms capture it and convert it to organic carbon. When these organisms die and sink to the bottom, the carbon sinks with them. In the deep ocean, the removed carbon can be locked away for hundreds, even thousands of years.

Researchers discover enlarged areas of the spinal cord in fish, previously found only in four-limbed vertebrates

Zebrafish at the Laboratory of Fish Biology in Nagoya University Researchers discovered that zebrafish have enlarged areas of the spinal cord, previously believed to exist only in four-limbed vertebrates.
 Photo Credit: Naoyuki Yamamoto

Four-limbed vertebrates, known as tetrapods, have two enlarged areas in their spinal cords. The two enlargements have a correlation with the forelimbs and hind limbs, respectively. These enlargements are thought to be caused by the complex muscular system and the rich sensory networks supplying nerves to the limbs.

Meanwhile, it was long thought that fish had no enlarged areas in their spinal cords due to the absence of limbs. However, a recent study by scientists from Nagoya University in Japan has revealed that zebrafish, in fact, have enlarged areas in their spinal cords, although these areas are not visible to the naked eye.

"We thought that fish also have spinal enlargements because they have paired pectoral and pelvic fins, which correspond to forelimbs and hind limbs in tetrapods, respectively," said  Naoyuki Yamamoto, a professor at Nagoya University's Graduate School of Bioagricultural Sciences and the lead author of the study.

Changes in gut microbiota influence which patients get AIG-related neuroendocrine tumors

Researchers took biopsies of AIG patients with and without neuroendocrine tumor growth to understand their bacterial communities
Image Credit: Osaka Metropolitan University

Researchers from Osaka Metropolitan University have discovered how the balance of bacteria in the stomach affects the growth of neuroendocrine tumors (NETs). By identifying the specific bacteria involved and the biochemical reactions that cause tumor growth, the researchers hope to create a new diagnostic technique to detect which patients are most likely to develop cancer.

Autoimmune gastritis (AIG) is a long-term condition in which the body’s immune system mistakenly attacks the lining of the stomach. This ongoing immune response gradually damages the stomach, affecting how it functions and its ability to protect itself from harmful agents. Over time, these changes can increase the risk of developing NETs, a type of tumor that develops from hormone-producing cells in the stomach.

Tiny worms reveal big secrets about memory

Caenorhabditis elegans
Image Credit: Chew Lab

In a discovery that could reshape how we think about memory, researchers at Flinders University have found that forgetting is not just a glitch in the brain but is actually a finely tuned process, and dopamine is the key.

Led by neuroscientist Dr Yee Lian Chew and PhD student Anna McMillen, from Flinders Health and Medical Research Institute (FHMRI), the research team has shown that the brain actively forgets using the same chemical that helps us learn, dopamine.

Published in the Journal of Neurochemistry, the study used tiny worms called Caenorhabditis elegans – one millimetre long with only 300 neurons, yet 80% genetically identical to humans – to explore how memories fade.

These microscopic creatures might seem worlds apart from humans, but their brains share many of the same molecular pathways that makes them perfect for studying brain pathways including memory.

Engineered “natural killer” cells could help fight cancer

Caption:A new study identifies genetic modifications that make “natural killer” cells more effective at destroying cancer cells.
Image Credit: NIAID
(CC BY-NC-ND 4.0)

One of the newest weapons that scientists have developed against cancer is a type of engineered immune cell known as CAR-NK (natural killer) cells. Similar to CAR-T cells, these cells can be programmed to attack cancer cells.

MIT and Harvard Medical School researchers have now come up with a new way to engineer CAR-NK cells that makes them much less likely to be rejected by the patient’s immune system, which is a common drawback of this type of treatment.

The new advance may also make it easier to develop “off-the-shelf” CAR-NK cells that could be given to patients as soon as they are diagnosed. Traditional approaches to engineering CAR-NK or CAR-T cells usually take several weeks.

“This enables us to do one-step engineering of CAR-NK cells that can avoid rejection by host T cells and other immune cells. And, they kill cancer cells better and they’re safer,” says Jianzhu Chen, an MIT professor of biology, a member of the Koch Institute for Integrative Cancer Research,and one of the senior authors of the study.

Tuesday, October 7, 2025

Engineers Develop Solid Lubricant to Replace Toxic Materials in Farming

Photo Credit: Courtesy of North Carolina State University

Researchers have developed a new class of nontoxic, biodegradable solid lubricants that can be used to facilitate seed dispersal using modern farming equipment, with the goal of replacing existing lubricants that pose human and environmental toxicity concerns. The researchers have also developed an analytical model that can be used to evaluate candidate materials for future lubricant technologies.

Modern farming makes use of various machines to accurately and efficiently plant seeds in the ground. However, it can be difficult to prevent the seeds from jamming in these machines. To keep the seeds flowing smoothly, farmers use solid lubricants that prevent the seeds from clumping up or sticking together. Unfortunately, commercially available lubricants make use of talc or microplastics, and can pose threats to farmers, farmland and pollinators.

“Lubricants are essential to modern farming, but existing approaches are contributing to toxicity in our farmlands that affect farmer health, soil health and pollinators that are essential to our food supply,” says Dhanush Udayashankara Jamadgni, co-lead author of a paper on the work and a Ph.D. student at North Carolina State University. “We’ve developed a new class of safe solid lubricants that are effective and nontoxic.”

SwRI develops technology to deploy stabilized solar arrays, enabling spacecraft docking

Southwest Research Institute (SwRI) has developed technology that enables spacecraft to utilize precision pointing algorithms for attitude control. SwRI is currently integrating the Parallelogram Synchronized Truss Assembly (PaSTA) technology to stabilize deployed solar arrays on the Astroscale U.S. Refueler.
Image Credit: Southwest Research Institute

Southwest Research Institute (SwRI) has developed technology to stiffen deployable structures on spacecraft, enabling autonomous spacecraft docking operations. SwRI is currently integrating the Parallelogram Synchronized Truss Assembly (PaSTA) technology with solar arrays on the Astroscale U.S. Refueler spacecraft The team is also designing two different deployable booms using PaSTA technology for another spacecraft SwRI is developing.

The Astroscale U.S. Refueler, a 300-kilogram spacecraft, will be the first to conduct hydrazine refueling operations above geostationary orbit for the United States Space Force (USSF) and will be the first-ever on-orbit refueling mission supporting a U.S. Department of War asset. SwRI has been contracted by Astroscale U.S. to build, integrate and test the refueler for the USSF. The spacecraft requires precision pointing to dock with other vehicles in space, which necessitates a stiff deployable solar array to power its movements.

Featured Article

What Is: The Human Microbiome

The Human Microbiome Image Credit: Scientific Frontline stock image The Invisible Organ The human body is not a sterile, solitary entity. It...

Top Viewed Articles