. Scientific Frontline

Tuesday, November 18, 2025

Microplastics hit male arteries hard

Changcheng Zhou Professor, Biomedical Sciences
Photo Credit: Courtesy of University of California, Riverside

A mouse study led by University of California, Riverside biomedical scientists suggests that everyday exposure to microplastics — tiny fragments shed from packaging, clothing, and countless plastic products — may accelerate the development of atherosclerosis, the artery-clogging process that leads to heart attacks and strokes. The harmful effects were seen only in male mice, offering new clues about how microplastics may affect cardiovascular health in humans.

“Our findings fit into a broader pattern seen in cardiovascular research, where males and females often respond differently,” said lead researcher Changcheng Zhou, a professor of biomedical sciences in the UCR School of Medicine. “Although the precise mechanism isn’t yet known, factors like sex chromosomes and hormones, particularly the protective effects of estrogen, may play a role.”

Researchers link Antarctic ice loss to ‘storms' at the ocean's subsurface

Mattia Poinelli, a UC Irvine postdoctoral scholar in Earth system science and NASA JPL research affiliate, outlines in a newly published study the impact of submesoscale events – small, subsurface ocean eddies and vortices – on Antarctica’s ice sheets. “Despite being largely overlooked in the context of ice-ocean interactions,” he says, “[they] are among the primary drivers of ice loss.”
Photo Credit: Steve Zylius / UC Irvine

Researchers at the University of California, Irvine and NASA’s Jet Propulsion Laboratory have identified stormlike circulation patterns beneath Antarctic ice shelves that are causing aggressive melting, with major implications for global sea level rise projections.

In a paper published recently in Nature Geoscience, the scientists say their study is the first to examine ocean-induced ice shelf melting events from a weather timescale of just days versus seasonal or annual timeframes. This enabled them to match “ocean storm” activity with intense ice melt at Thwaites Glacier and Pine Island Glacier in the climate change-threatened Amundsen Sea Embayment in West Antarctica.

The research team relied on climate simulation modeling and moored observation tools to gain 200-meter-resolution pictures of submesoscale ocean features between 1 and 10 kilometers across, tiny in the context of the vast ocean and huge slabs of floating ice in Antarctica.

Researchers build bone marrow model entirely from human cells

Scanning electron microscopy image of the engineered 3D bone marrow tissue colonized with human blood cells (red).
Image Credit: Andrés García-García, University of Basel, Department of Biomedicine

Our body’s “blood factory” consists of specialized tissue made up of bone cells, blood vessels, nerves and other cell types. Now, researchers have succeeded for the first time in recreating this cellular complexity in the laboratory using only human cells. The novel system could reduce the need for animal experiments for many applications.

The bone marrow usually works quietly in the background. It only comes into focus when something goes wrong, such as in blood cancers. In these cases, understanding exactly how blood production in our body works, and how this process fails, becomes critical. 

Typically, bone marrow research relies heavily on animal models and oversimplified cell cultures in the laboratory. Now, researchers from the Department of Biomedicine at the University of Basel and University Hospital Basel have developed a realistic model of bone marrow engineered entirely from human cells. This model may become a valuable tool not only for blood cancer research, but also for drug testing and potentially for personalized therapies, as reported by a team of researchers led by Professor Ivan Martin and Dr Andrés García-García in the journal Cell Stem Cell

Floating solar panels show promise, but environmental impacts vary by location

The Canoe Brook Floating Solar Photovoltaic (FPV) project, the largest in the United States at the time of completion at 8.9 MW, is located on a water storage reservoir is New Jersey.
Photo Credit Prateek Joshi / NREL

Floating solar panels are emerging as a promising clean energy solution with environmental benefits, but a new study finds those effects vary significantly depending on where the systems are deployed.

Researchers from Oregon State University and the U.S. Geological Survey modeled the impact of floating solar photovoltaic systems on 11 reservoirs across six states. Their simulations showed that the systems consistently cooled surface waters and altered water temperatures at different layers within the reservoirs. However, the panels also introduced increased variability in habitat suitability for aquatic species.

“Different reservoirs are going to respond differently based on factors like depth, circulation dynamics and the fish species that are important for management,” said Evan Bredeweg, lead author of the study and a former postdoctoral scholar at Oregon State. “There’s no one-size-fits-all formula for designing these systems. It’s ecology - it’s messy.”

A new way to trigger responses in the body

Photo Credit: Courtesy of University of Tokyo

Researchers at the University of Tokyo developed an experimental method to induce a strong physiological response linked to psychological pressure by making participants aim for a streak of success in a task. Their findings suggest this approach reproduces pressurelike conditions in a laboratory setting more effectively than traditional methods, affording easier access to the study of this state. That in turn could open up research into how pressure influences human performance in physical and intellectual tasks.

Whether in an exam hall or on the field, to “crack” under pressure is a common trope. But what’s the reality behind this idea? It’s easy to assume that with greater pressure comes greater chance of losing your composure. To know, then, how to overcome this could yield greater performance benefits. But the path to study such ideas is far from simple. Being rigorous in the field of psychology is extremely difficult, as there are limitless factors that can impact different people in different ways. Previous experimental methods have been limited in that they failed to induce strong physiological arousal.

Monday, November 17, 2025

SwRI turbocharges its hydrogen-fueled internal combustion engine

SwRI has a multidisciplinary team dedicated to Hydrogen Energy Research initiatives to deploy decarbonization technologies across a broad spectrum of industries. In 2022, SwRI began modifying a heavy-duty natural gas-fueled engine to run on 100% hydrogen fuel, successfully demonstrated in 2024. SwRI continues to research, design and innovate on H2-ICE technology. 
Photo Credit: Southwest Research Institute

Southwest Research Institute (SwRI) has upgraded its hydrogen-powered heavy-duty internal combustion engine (H2-ICE) with a state-of-the-art turbocharger. The upgrades have significantly improved performance across the board, making the engine competitive with current long-haul diesel engines focused on fuel economy while maintaining near-zero tailpipe emissions.

In 2023, SwRI converted a traditional natural gas-fueled internal combustion engine to run solely on hydrogen fuel with minimal modifications. It was integrated into a Class-8 truck as part of the Institute’s H2-ICE project to demonstrate a cost-efficient hydrogen-fueled engine as an option for zero-tailpipe carbon dioxide heavy-duty transportation.

Entomology: In-Depth Description

Photo Credit: Lidia Stawinska

Entomology is the scientific study of insects, a branch of zoology. Its primary goals are to understand the biology, behavior, physiology, ecology, evolution, and classification of insects, as well as their interactions with humans, other organisms, and the environment.

A new angle of study for unveiling black hole secrets

The balloon-borne telescope XL-Calibur was launched on a six-day flight from the Swedish Space Corporation’s Esrange Space Center in July 2024. During that flight, the telescope took measurements from the black hole Cygnus X-1, located about 7,000 light-years away. WashU researchers will use those results to improve computer models for simulating and uncovering further mysteries of black holes.
Photo Credit: NASA/SSC

An international collaboration of physicists including researchers at Washington University in St. Louis has made measurements to better understand how matter falls into black holes and how enormous amounts of energy and light are released in the process.

The scientists pointed a balloon-borne telescope called XL-Calibur at a black hole, Cygnus X-1, located about 7,000 light-years from Earth. “The observations we made will be used by scientists to test increasingly realistic, state-of-the-art computer simulations of physical processes close to the black hole,” said Henric Krawczynski, the Wilfred R. and Ann Lee Konneker Distinguished Professor in Physics and a fellow at WashU’s McDonnell Center for the Space Sciences.

Disrupting bacterial "chatter" to improve human health

Computer-rendered split image of bacteria on a tooth surface. When microbial communication is “on”, disease-associated species grow (left). Disrupting this communication (right) promotes health-associated bacteria.
Image Credit: University of Minnesota

Like all living things, bacteria adapt to survive. Over time, bacteria have been developing resistance to common antibiotics and disinfectants, which poses a growing problem for healthcare and sanitation. However, many species of bacteria are beneficial and even essential for human health. What if there was a way to change the behavior of bacteria in the body to prevent illness and poor health outcomes? 

Bacteria are very “talkative.” Constant streams of communication, known as quorum sensing, occur between and among the 700 species of bacteria that live in a human mouth. A number of them communicate via special molecules called N-acyl homoserine lactones (AHLs). 

Wastewater from most countries favors non-resistant bacteria

Joakim Larsson, Professor at the Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, and director of CARe, Centre for Antibiotic Resistance Research.
Photo Credit: Johan Wingborg

A global study led by researchers at the Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Sweden shows that municipal wastewater is not always the breeding ground for antibiotic resistance it is often thought to be. By testing wastewater from 47 countries, the team found that while some samples could select for resistant E. coli, the majority instead selected against resistance. These insights reshape our understanding of when and where resistance is likely to evolve and spread. 

Municipal wastewater contains a large range of excreted antibiotics and has therefore long been suspected to be a spawning ground for antibiotic-resistant bacteria. Now, a study published in Nature Communications led by a team from the University of Gothenburg provides a more nuanced picture. 

Featured Article

What Is: The Phanerozoic Eon

Defining the Eon of Complex Life Image Credit: Scientific Frontline / AI generated The Phanerozoic Eon constitutes the current and most biol...

Top Viewed Articles