![]() |
| Sika Zheng Photo Credit: Courtesy of University of California, Riverside |
A collaborative study by scientists at the University of California, Riverside, and University of Southern California reports on how a process known as alternative splicing, often described as “editing” the genetic recipe, may help explain why some mammals live far longer than others.
Published in Nature Communications, the study, which compared alternative RNA processing in 26 mammal species with maximum lifespans ranging from 2.2 to 37 years (>16-fold differences), found that changes in how genes are spliced, more than just how active they are, play a key role in determining maximum lifespan.





.jpg)



