. Scientific Frontline

Monday, December 15, 2025

Stroke and dementia: combating loss of function in small vessels of the brain

Professor Martin Dichgans
Photo Credit: © LMU / Stephan Höck

Researchers at LMU University Hospital have elucidated how diseases of small blood vessels in the brain develop. So-called cerebral small vessel disease (CSVD) can lead to widespread consequences such as circulatory disorders, hemorrhages, and often severe strokes, and is considered one of the main causes of dementia. The scientists' results have now been published in the journal Nature Neuroscience. 

In view of the prevalence of this serious and life-threatening condition—strokes, for example, are the leading cause of long-term disability and the second leading cause of death—it is astonishing "that medicine has so far known comparatively little about the cellular and molecular mechanisms underlying the development of cerebral small vessel disease," says LMU Professor Martin Dichgans, Chair of Translational Stroke and Dementia Research, Director of the Institute for Stroke and Dementia Research (ISD) at LMU University Hospital Munich, and future spokesperson for the SyNergy Cluster of Excellence. 

Fine particles in pollution are associated with early signs of autoimmune disease

Photo Credit: Chris LeBoutillier

A new study has linked air pollution exposure and immune-system changes that often precede the onset of autoimmune diseases. 

McGill University researchers analyzing Ontario data found that fine particles in air pollution are associated with higher levels of a biomarker linked with autoimmune diseases, such as systemic lupus. 

“These results point us in a new direction for understanding how air pollution might trigger immune system changes that are associated with autoimmune disease,” said Dr. Sasha Bernatsky, a James McGill Professor of Medicine and member of the McGill Centre for Climate Change and Health, the Division of Rheumatology and the Centre for Outcome Research and Evaluation. “We know some genetic factors play a role in autoimmune disease, but they don’t tell the whole story.” 

Lowering blood sugar cuts heart attack risk in people with prediabetes

Lowering blood sugar levels halves the likelihood of serious heart problems in people with prediabetes.
Photo Credit: isens usa

According to King’s College London research, published in The Lancet Diabetes & Endocrinology, bringing blood glucose back to normal levels - effectively reversing prediabetes - cuts the risk of death from heart disease or hospital admission for heart failure by more than 50%. 

This finding is especially important considering recent research showing that lifestyle changes alone - including exercise, weight loss and dietary improvements - do not lower cardiovascular risk in people with prediabetes. 

Together, these discoveries present a new, life-saving target for prediabetes and the prevention of cardiovascular disease; while potentially signaling a paradigm change for the way these conditions are treated by clinicians. 

Electrodes created using light

Researcher at LiU have developed a technique where visible light can be used to create electrodes from conductive plastics completely without hazardous chemicals. The technique requires no advanced laser setups – visible light from simple LED lamps, such as a party light, can drive the polymerization. 
Photo Credit: Thor Balkhed

Visible light can be used to create electrodes from conductive plastics completely without hazardous chemicals. This is shown in a new study carried out by researchers at Linköping and Lund universities. The electrodes can be created on different types of surfaces, which opens up for a new type of electronics and medical sensors. 

“I think this is something of a breakthrough. It’s another way of creating electronics that is simpler and doesn’t require any expensive equipment,” says Xenofon Strakosas, assistant professor at the Laboratory of Organic Electronics, LOE, at Linköping University. 

Scientists identify small RNA molecule that regulates cholesterol and heart disease

Xiuchun Li is the first author of the research paper.
Photo Credit: UCR/Zhou lab

A team of researchers led by University of California, Riverside biomedical scientists has identified a small, previously overlooked small RNA molecule that plays a major role in controlling the body’s cholesterol production and the development of heart disease. The molecule, named tsRNA-Glu-CTC, could be a potential new target for future therapies aimed at lowering high cholesterol.

Using PANDORA-seq, a sequencing technology developed at UC Riverside, the scientists were able to detect hidden types of small RNAs in the liver, the organ central to cholesterol metabolism. They found that tsRNA-Glu-CTC is highly abundant in the liver (more than 65% of all detectable tsRNAs or tRNA-derived small RNAs) and responds directly to changes in cholesterol levels. The study was done in mice.

The research established a direct link between tsRNA-Glu-CTC and SREBP2 (Sterol Regulatory Element-Binding Protein 2), a key protein known as the “master regulator” of cholesterol production.

Reproduced human neural circuits show the crucial role of the thalamus in shaping the cortical circuit

Assembloid [3D fluorescent staining] Axons in the thalamus (pink) extended toward the cortex, while those in the cortex (green) extended toward the thalamus at 14 days post-fusion.
Image Credit: Fumitaka Osakada

A Japanese research team has successfully reproduced the human neural circuit in vitro using multi-region miniature organs known as assembloids, which are derived from induced pluripotent stem (iPS) cells. With this circuit, the team demonstrated that the thalamus plays a crucial role in shaping cell type-specific neural circuits in the human cerebral cortex.

These findings were published in the journal Proceedings of the National Academy of Sciences of the United States of America.

Our brain’s cerebral cortex contains various types of neurons, and effective communication among these neurons and other brain regions is crucial for activating functions like perception and cognition.

Patients with neurodevelopmental disorders, such as autism spectrum disorder (ASD), exhibit disruptions in the structure and function of neural circuits in the cerebral cortex. Therefore, understanding the principles of these circuits is essential to uncovering the causes of these disorders and developing new medications.

Raising strong yeast as a petroleum substitute

Strengthened Saccharomyces cerevisiae   
This common yeast is a strong contender for replacing petroleum in 2,3-butanediol production.   
Image Credit: Osaka Metropolitan University

As fossil fuels rise in cost and green initiatives gain traction, alternative methods for producing useful compounds using microorganisms have the potential to become sustainable, environmentally friendly technologies.

One such process involves the common bread yeast, Saccharomyces cerevisiae (S. cerevisiae), to produce 2,3-butanediol (2,3-BDO), an organic compound often used in pharmaceuticals and cosmetics. However, this yeast has a low tolerance for 2,3-BDO under high concentrations, which leads to a decline in its production ability and hinders the mass commercialization of this method.

Farmers boosted Europe's biodiversity over the last 12,000 years

Standing stones in Carnac, France. Built between 6,500 - 5,300 years ago by Europe's first farmers.
 Photo Credit: Jonny Gordon.

Although humans are to blame for nature’s recent decline, a new study shows that for millennia, European farming practices drove biodiversity gains, not losses. 

Standing stones in Carnac, France. Built between 6,500 - 5,300 years ago by Europe's first farmers. Picture by Jonny Gordon. 

A team of researchers at the University of York analyzed fossil pollen records from Europe to track vegetation changes stretching back 12,000 years. They discovered that as new populations of farmers from Turkey moved into Europe 9,000 years ago, far from destroying plant diversity, they enriched it. 

Dr Jonny Gordon is a Postdoctoral Research Associate in the Leverhulme Centre for Anthropocene Biodiversity and lead author of the new paper, Increased Holocene diversity in Europe linked to human-associated vegetation change, which has been published in Global Ecology and Biogeography

Sunday, December 14, 2025

What Is: Gravitational Microlensing

Scientific Frontline / Stock image

The universe, in its vastness, is largely composed of matter that does not shine. For centuries, the discipline of astronomy was fundamentally limited to the study of luminous objects: stars that fuse hydrogen into helium, gas clouds excited by radiation, and galaxies that act as islands of light in the cosmic dark. This reliance on electromagnetic radiation—photons—as the primary messenger of cosmic information created a significant selection bias. It rendered the "dark sector" of the Milky Way, including brown dwarfs, black holes, old white dwarfs, and free-floating planetary-mass objects, effectively invisible to standard census techniques. To map the true mass distribution of our galaxy, astronomers required a method that did not rely on the emission of light but rather on the one force that pervades all matter: gravity. 

Tuesday, December 9, 2025

UCLA team discovers how to target ‘undruggable’ protein that fuels aggressive leukemia

B-lymphoblastic leukemia, a type of blood cancer.
Image Credit: Courtesy of the Rao Laboratory.

Researchers at the UCLA Health Jonsson Comprehensive Cancer Center have identified a small molecule that can inhibit a cancer-driving protein long considered impossible to target with drugs — a discovery that could open the door to a new class of treatments for leukemia and other hard-to-treat cancers. 

The compound, called I3IN-002, disrupts the ability of a protein known as IGF2BP3 to bind and stabilize cancer-promoting RNAs, a mechanism that fuels aggressive forms of acute leukemia. The study published in the journal Haematologica, found the molecule not only slowed leukemic cell growth but also triggered cancer cell death and reduced the population of leukemia-initiating cells that sustain the disease.

“This project has been more than a decade in the making,” said Dr. Dinesh Rao, professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA and senior author of the study. “We discovered IGF2BP3 years ago as an important driver in acute leukemias, and for a long time there were no tools to target it. To finally show that we can inhibit this protein and disrupt its function in cancer cells is incredibly exciting.” 

Featured Article

Fine particles in pollution are associated with early signs of autoimmune disease

Photo Credit:  Chris LeBoutillier A new study has linked air pollution exposure and immune-system changes that often precede the onset of au...

Top Viewed Articles