. Scientific Frontline

Thursday, December 25, 2025

Restoring the healthy form of a protein could revive blood vessel growth in premature infants’ lungs

A blood vessel organoid.
Video Credit: Yunpei Zhang and Enbo Zhu, Mingxia Gu Lab

A UCLA-led research team has discovered a molecular switch that determines whether tiny blood vessels in premature infants’ lungs can regenerate after injury. A failure of this repair process is a hallmark of bronchopulmonary dysplasia, or BPD, a serious lung disease that affects babies born very early. It arises from a combination of premature birth, inflammation or infection, and exposure to the high levels of oxygen and breathing support that are necessary to keep these infants alive during a critical period of lung development.

The researchers found that in BPD, the blood vessel cells in the lungs begin producing a shortened, nonfunctional isoform — a version of a protein — called NTRK2, which has been extensively studied in the nervous system but not in the pulmonary vasculature. When this shortened isoform dominates, the lung cannot rebuild the delicate network of tiny blood vessels needed for healthy breathing.

Why can’t powerful AIs learn basic multiplication?

Image Credit: Scientific Frontline / Stock image

These days, large language models can handle increasingly complex tasks, writing complex code and engaging in sophisticated reasoning. 

But when it comes to four-digit multiplication, a task taught in elementary school, even state-of-the-art systems fail. Why? 

A new paper by University of Chicago computer science Ph.D. student Xiaoyan Bai and faculty co-director of the Data Science Institute's Novel Intelligence Research Initiative Chenhao Tan finds answers by reverse-engineering failure and success.

They worked with collaborators from MIT, Harvard University, University of Waterloo and Google DeepMind to probe AI’s “jagged frontier”—a term for its capacity to excel at complex reasoning yet stumble on seemingly simple tasks.

Oncology: In-Depth Description

Image Credit: Scientific Frontline / AI generated

Oncology is the branch of medicine and biology dedicated to the study, diagnosis, treatment, and prevention of cancer. Derived from the Greek word onkos (meaning "mass" or "bulk"), this field focuses on understanding neoplasms (tumors) and the complex biological mechanisms that cause uncontrolled cell division. The primary goal of oncology is to improve patient survival and quality of life through the development of therapeutic interventions and the early detection of malignancies.

The Quest for the Synthetic Synapse

Spike Timing" difference (Biology vs. Silicon)
Image Credit: Scientific Frontline

The modern AI revolution is built on a paradox: it is incredibly smart, but thermodynamically reckless. A large language model requires megawatts of power to function, whereas the human brain—which allows you to drive a car, debate philosophy, and regulate a heartbeat simultaneously—runs on roughly 20 watts, the equivalent of a dim lightbulb.

To close this gap, science is moving away from the "Von Neumann" architecture (where memory and processing are separate) toward Neuromorphic Computing—chips that mimic the physical structure of the brain. This report analyzes how close we are to building a "synthetic synapse."

Nutritional Science: In-Depth Description

Image Credit: Scientific Frontline / stock image

Nutritional Science is the multidisciplinary study of food and nutrients, investigating how the body ingests, digests, absorbs, transports, utilizes, and excretes these substances, and how they impact overall health, growth, and disease prevention.

Its primary goals are to define the physiological requirements for nutrients across the lifespan, understand the metabolic pathways involved in nutrient utilization, and determine the optimal dietary patterns to reduce the risk of chronic diseases and promote well-being.

Tuesday, December 23, 2025

Scientists Crack Ancient Salt Crystals to Unlock Secrets of 1.4 Billion-Year-Old Air

Microscopic image of fluid inclusions in 1.4-billion-year-old halite crystals, which preserve ancient air and brine.
Image Credit: Justin Park/RPI

More than a billion years ago, in a shallow basin across what is now northern Ontario, a subtropical lake much like modern-day Death Valley evaporated under the sun’s gentle heat, leaving behind crystals of halite — rock salt.

It was a very different world than the one we know today. Bacteria were the dominant form of life. Red algae had only just appeared on the evolutionary scene. Complex multicellular life like animals and plants wouldn’t show up for another 800 million years. 

As the water evaporated into brine, some of it became trapped in tiny pockets within the crystals, effectively frozen in time. Those trapped fluid inclusions contained air bubbles revealing, in fine detail, the composition of the early Earth’s atmosphere. The crystals were buried in sediment, effectively sealed off from the rest of the world for 1.4 billion years, their secrets unknown. Until now. 

Tohoku University and Fujitsu Use AI to Discover Promising New Superconducting Material

The AI technology was utilized to automatically clarify causal relationships from measurement data obtained at NanoTerasu Synchrotron Light Source
Image Credit: Scientific Frontline / stock image

Tohoku University and Fujitsu Limited announced their successful application of AI to derive new insights into the superconductivity mechanism of a new superconducting material. Their findings demonstrate an important use case for AI technology in new materials development and suggests that the technology has the potential to accelerate research and development. This could drive innovation in various industries such as environment and energy, drug discovery and healthcare, and electronic devices.

The two parties used Fujitsu's AI platform Fujitsu Kozuchi to develop a new discovery intelligence technique to accurately estimate causal relationships. Fujitsu will begin offering a trial environment for this technology in March 2026. Furthermore, in collaboration with the Advanced Institute for Materials Research (WPI-AIMR), Tohoku University , the two parties applied this technology to data measured by angle-resolved photoemission spectroscopy (ARPES), an experimental method used in materials research to observe the state of electrons in a material, using a specific superconducting material as a sample.

New species are now being discovered faster than ever before, study suggests

Among the approximately 16,000 new species described every year, roughly 6,000 are insects. Pictured here is a lanternfly from India.
Photo Credit: John J. Wiens

About 300 years ago, Swedish naturalist Carl Linnaeus set out on a bold quest: to identify and name every living organism on Earth. Now celebrated as the father of modern taxonomy, he developed the binomial naming system and described more than 10,000 species of plants and animals. Since his time, scientists have continued to describe new species in the quest to uncover Earth's biodiversity.

According to a new University of Arizona-led study published in Science Advances, scientists are discovering species quicker than ever before, with more than 16,000 new species discovered each year. The trend shows no sign of slowing, and the team behind the new paper predicts that the biodiversity among certain groups, such as plants, fungi, arachnids, fishes and amphibians is richer than scientists originally thought. 

"Some scientists have suggested that the pace of new species descriptions has slowed down and that this indicates that we are running out of new species to discover, but our results show the opposite," said John Wiens, a professor in the University of Arizona Department of Ecology and Evolutionary Biology, in the College of Science, and senior author of the paper. "In fact, we're finding new species at a faster rate than ever before."

Ultra-high-resolution Lidar Reveals Hidden Cloud Structures

This experimental setup at Michigan Technological University allows researchers to create and study clouds under carefully controlled conditions. Researchers from Brookhaven National Laboratory used it to demonstrate the capabilities of a new ultra-high-resolution lidar, a laser-based remote sensing instrument for studying cloud properties.
Photo Credit: Michigan Technological University

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators have developed a new type of lidar — a laser-based remote-sensing instrument — that can observe cloud structures at the scale of a single centimeter. The scientists used this high-resolution lidar to directly observe fine cloud structures in the uppermost portion of laboratory-generated clouds. This capability for studying cloud tops with resolution that is 100 to 1,000 times higher than traditional atmospheric science lidars enables pairing with measurements in well-controlled chamber experiments in a way that has not been possible before.

The results, published in the Proceedings of the National Academy of Sciences, provide some of the first experimental data showing of how cloud droplet properties near the tops of clouds differ from those in the cloud interior. These differences are crucial to understanding how clouds evolve, form precipitation, and affect Earth’s energy balance.

“This is the first time we’ve been able to see these cloud-top microstructures directly and non-invasively,” said Fan Yang, an atmospheric scientist at Brookhaven Lab and the lead author of the study. “These structures occur on scales smaller than those used in most atmospheric models, yet they can strongly affect cloud brightness and how likely clouds are to produce rain.”

Monday, December 22, 2025

Neuroscience: In-Depth Description

Image Credit: Scientific Frontline / stock image

Neuroscience is the multidisciplinary scientific study of the nervous system, encompassing the brain, spinal cord, and peripheral nerves. Its primary goal is to understand the biological basis of consciousness, perception, memory, and behavior by investigating the structure, function, genetics, biochemistry, physiology, and pathology of nervous tissue.

Featured Article

What Is: Biological Plasticity

Image Credit: Scientific Frontline The Paradigm of the Reactive Genome  The history of biological thought has long been dominated by a tensi...

Top Viewed Articles