. Scientific Frontline

Monday, April 8, 2024

This 3D printer can figure out how to print with an unknown material

Researchers developed a 3D printer that can automatically identify the parameters of an unknown material on its own.
Photo Credit: Courtesy of the researchers
(CC BY-NC-ND 4.0 DEED)

While 3D printing has exploded in popularity, many of the plastic materials these printers use to create objects cannot be easily recycled. While new sustainable materials are emerging for use in 3D printing, they remain difficult to adopt because 3D printer settings need to be adjusted for each material, a process generally done by hand.

To print a new material from scratch, one must typically set up to 100 parameters in software that controls how the printer will extrude the material as it fabricates an object. Commonly used materials, like mass-manufactured polymers, have established sets of parameters that were perfected through tedious, trial-and-error processes.

But the properties of renewable and recyclable materials can fluctuate widely based on their composition, so fixed parameter sets are nearly impossible to create. In this case, users must come up with all these parameters by hand.

Researchers tackled this problem by developing a 3D printer that can automatically identify the parameters of an unknown material on its own.

Scientists Have Detailed the Nature of the Darkest Gamma-ray Burst in the Universe

Objects like GRB 150309A tend to be located deep within galaxies.
Photo Credit: Graham Holtshausen

An international group of scientists has presented the results of a detailed spectral analysis of the instantaneous and residual X-ray emission (afterglow) from the intense two-episode dark gamma-ray burst GRB 150309A. The researchers' task was to determine the nature of the instantaneous emission and the composition of the jet ejected in the burst. In addition, based on optical and X-ray spectral analysis of the energy distribution, the researchers performed modeling of the parent galaxy of GRB 150309A to study the surrounding interstellar medium in which this outburst occurred. The results of the analysis are presented in a paper published in the journal Astronomy and Astrophysics.

A bright flash GRB 150309A lasting about 52 seconds was detected on March 9, 2015, by the Gamma-ray Burst Observatory of the Fermi Gamma-ray Space Telescope, a space observatory in low Earth orbit. The event consisted of two bursts: about 200 seconds after the first, more powerful burst, an episode of faint and quiet emission followed.

Despite the strong gamma-ray emission, optical observations with the BOOTES (Burst Observer and Optical Transient Exploration System) and GTC (Gran Telescopio Canarias) telescopes were inconclusive: only the parent galaxy of the outburst signal was detected at optical wavelengths. The X-ray afterglow of GRB 150309A was detected about 5.2 hours after the outburst by the CIRCE instrument installed on the GTC at the Spanish La Palma Observatory.

The optical inaccessibility under intense gamma-ray emission and the intense red X-ray afterglow detected in the near-infrared with CIRCE led scientists to suggest that GRB 150309A belongs to a subclass of dark bursts.

Sunday, April 7, 2024

Disparities in sleep health and insomnia may begin at a young age

Photo Credit: Komang Dewi

Most people have experienced a night or two of sleeplessness, tossing and turning while being unable to fall asleep or stay asleep. But for some people, sleep disturbances aren’t just a one-off occurrence, and they can begin in childhood.

A team, led by Penn State researchers, found that children and teens from racial and ethnic minority groups are disproportionately affected by persistent insomnia symptoms that begin in childhood and continue through young adulthood. Specifically, Black children were 2.6 times more likely to experience these long-term sleep problems compared to white children. The findings underscore the need to identify insomnia symptoms early and intervene with age-appropriate treatment.

“Insomnia is a public health problem,” said Julio Fernandez-Mendoza, professor at Penn State College of Medicine and senior author of the study recently published in the journal SLEEP. “We’ve identified that more people than we thought have childhood-onset insomnia where symptoms start in childhood and remain chronic all the way through young adulthood.”

Poor sleep is linked to cardiometabolic disease, depression and anxiety, among other concerns. Yet, when it comes to sleep and children, insomnia symptoms aren’t always taken seriously. Fernandez-Mendoza said that most people assume that difficulty falling asleep and staying asleep is a phase that kids will outgrow.

Friday, April 5, 2024

Single genomic test could speed up diagnoses for rare genetic diseases

Image Credit: Sinousxl

A new approach to analyzing exome sequencing data reliably detects large-scale genetic changes and could reduce the number of genetic tests a child might need.

A single genetic test could potentially replace the current two-step approach to diagnosing rare developmental disorders in children, enabling earlier diagnoses for families and saving the NHS vital resources.

Researchers from the University of Exeter, along with collaborators at the Wellcome Sanger Institute, and the University of Cambridge, reassessed genetic data from nearly 10,000 families from the Deciphering Developmental Disorders study.

In a new study, recently published in Genetics in Medicine, they show for the first time that using exome sequencing – which reads only protein-coding DNA – is as accurate, if not better, than standard microarrays at identifying disease-causing structural genetic variations.

Its adoption offers hope for faster and more accurate diagnoses of rare genetic diseases. It could also deliver substantial cost savings for the NHS, though more training is needed for specialists to generate and analyze the data, say researchers.

First atlas of the human ovary with cell-level resolution is a step toward artificial ovary

University of Michigan BME graduate student Jordan Machlin shows to prof. Ariella Shikanov and fellows grad student Margaret Brunette the images of oocytes in ovarian tissue she collected using RNA-fluorescence in situ hybridization.
Photo Credit: Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering

A new “atlas” of the human ovary provides insights that could lead to treatments restoring ovarian hormone production and the ability to have biologically related children, according to University of Michigan engineers.

This deeper understanding of the ovary means researchers could potentially create artificial ovaries in the lab using tissues that were stored and frozen before exposure to toxic medical treatments such as chemotherapy and radiation. Currently, surgeons can implant previously frozen ovarian tissue to temporarily restore hormone and egg production. However, this does not work for long because so few follicles—the structures that produce hormones and carry eggs—survive through reimplantation, the researchers say.

The new atlas reveals the factors that enable a follicle to mature, as most follicles wither away without releasing hormones or an egg. Using new tools that can identify what genes are being expressed at a single-cell level within a tissue, the team was able to home in on ovarian follicles that carry the immature precursors of eggs, known as oocytes.

Chemical reactions can scramble quantum information as well as black holes

Rice University theorist Peter Wolynes and collaborators at the University of Illinois Urbana-Champaign have shown that molecules can be as formidable at scrambling quantum information as black holes.
Image Credit: Courtesy of Martin Gruebele; DeepAI was used in image production

If you were to throw a message in a bottle into a black hole, all of the information in it, down to the quantum level, would become completely scrambled. Because in black holes this scrambling happens as quickly and thoroughly as quantum mechanics allows, they are generally considered nature’s ultimate information scramblers.

New research from Rice University theorist Peter Wolynes and collaborators at the University of Illinois Urbana-Champaign, however, shows that molecules can be as formidable at scrambling quantum information as black holes. Combining mathematical tools from black hole physics and chemical physics, they have shown that quantum information scrambling takes place in chemical reactions and can nearly reach the same quantum mechanical limit as it does in black holes. The work is published online in the Proceedings of the National Academy of Sciences.

“This study addresses a long-standing problem in chemical physics, which has to do with the question of how fast quantum information gets scrambled in molecules,” Wolynes said. “When people think about a reaction where two molecules come together, they think the atoms only perform a single motion where a bond is made or a bond is broken.

Tomorrow's reefs – the importance of environmental awareness in coral restoration

Restoration nursery in the northern Red Sea of smooth cauliflower coral (Stylophora pistillata), almost ready for reef transplantation. Classified as near-threatened, S. pistillata is native to the wider Indo-Pacific region. This nursery is at 5 metres depth, close to the Inter University Institute of Marine Science, Eilat.
Photo Credit: H Nativ/Morris Kahn Marine Research

Around the world, projects are underway to save or rebuild damaged coral reefs. However, many restoration projects fail within just a few years. Giving more consideration to current and future environmental conditions would, in many cases, improve long-term restoration success, say the researchers behind a new article published in Plos Biology.

Coral reefs are extremely valuable. An estimated 25 percent of all plants and animals in the ocean, and 1 billion people worldwide depend on them – for food, income, coastal protection or cultural traditions. But their existence is also threatened by multiple factors, such as climate change, pollution, overfishing and coastal development.

Relying on climate change mitigation alone to ensure the future viability of coral reefs is no longer realistic. Targeted efforts are now needed, and restoration of damaged coral reefs has today become a multimillion-dollar business. Nevertheless, the long-term outcome of many coral restoration projects is highly uncertain.

Plucking key evidence from air

PhD candidate Emily Bibbo and Dr Mariya Goray at the DNA forensics research room at Flinders University.
Photo Credit: Courtesy of Flinders University

Culprits may one day be found using a new technique to potentially pick up and record key airborne forensic DNA evidence from crime scenes wiped clean of fingerprints and other trace evidence.

A new study led by Flinders University forensic science researchers puts the new method to the test with conventional air-conditioning units as well as a portable, commercially available air collection device regularly used to test for COVID19 and other airborne viruses in hospitals, schools and nursing homes.

“Human DNA can be found in the air after people have spoken or breathed (via saliva droplets), shed skin cells or dislodged and aerosolized from surfaces and collected for DNA analysis,” says Emily Bibbo, a PhD candidate at Flinders University’s College of Science and Engineering.

“We may be able to use this as evidence to prove if someone has been in the room, even if they wore gloves or wiped surfaces clean to remove the evidence.”

Collection of trace DNA, comprising just a few human cells, is commonly used in criminal investigations. For example, 62% of all samples processed by Forensic Science SA in 2020 were trace or touch evidence, yet success rates with this type of evidence remain poor.

Discovery of how limiting damage from an asthma attack could stop disease

Scientists at King’s have discovered a new cause for asthma that sparks hope for treatment that could prevent the life-threatening disease.
Image Credit: Copilot DALL-E 3 AI Generated

Most current asthma treatments stem from the idea that it is an inflammatory disease. Yet, the life-threatening feature of asthma is the attack or the constriction of airways, making breathing difficult. A new study, published in the journal Science, shows for the first time that many features of an asthma attack—inflammation, mucus secretion, and damage to the airway barrier that prevents infections - result from this mechanical constriction in a mouse model.

The findings suggest that blocking a process that normally causes epithelial cell death could prevent the damage, inflammation, and mucus that result from an asthma attack.

Professor Jody Rosenblatt from the School of Basic & Medical Biosciences said: “Our discovery is the culmination of more than ten years of work. As cell biologists who watch processes, we could see that the physical constriction of an asthma attack causes widespread destruction of the airway barrier. Without this barrier, asthma sufferers are far more likely to get long-term inflammation, wound healing, and infections that cause more attacks. By understanding this fundamental mechanism, we are now in a better position to prevent all these events.”

Rapid, simultaneous detection of multiple bacteria achieved with handheld sensor

Marking bacteria electrochemically for rapid detection   
From left: Image of bacteria labeled with electrochemical markers, an electrochemical instrument to measure the data, and an image of the data displayed on a smartphone.     
Image Credit: Hiroshi Shiigi, Osaka Metropolitan University

Hearing the words E. coli or salmonella and food poisoning comes to mind. Rapid detection of such bacteria is crucial in preventing outbreaks of foodborne illness. While the usual practice is to take food samples to a laboratory to see the type and quantity of bacteria that forms in a petri dish over a span of days, an Osaka Metropolitan University research team has created a handheld device for quick on-site detection.

Led by Professor Hiroshi Shiigi of the Graduate School of Engineering, the team experimented with a biosensor that can simultaneously detect multiple disease-causing bacterial species within an hour.

“The palm-sized device for detection can be linked to a smartphone app to easily check bacterial contamination levels,” Professor Shiigi explained.

His team synthesized organic metallic nanohybrids of gold and copper that do not interfere with each other, so that electrochemical signals can be distinguished on the same screen-printed electrode chip of the biosensor. These organic−inorganic hybrids are made up of conductive polymers and metal nanoparticles. The antibody for the specific target bacteria was then introduced into these nanohybrids to serve as electrochemical labels.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles