But a team led by the universities of Stanford and Exeter say recent advances in the Earth and life sciences challenge this view.
Their review says these breakthroughs "decouple" the emergence of eukaryotes (known as eukaryogenesis) from rising oxygen levels, and suggest eukaryotes in fact emerged in an anoxic (no-oxygen) environment in the ocean.
"We can now independently date eukaryogenesis and key oxygenation transitions in Earth history," said Dr Daniel Mills, of Stanford University.
"Based on fossil and biological records, the timing of eukaryogenesis does not correlate with these oxygen transitions in the atmosphere (2.22 billion years ago) or the deep ocean (0.5 billion years ago).
"Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of deep-sea anoxia and variable surface-water oxygenation."
The emergence of mitochondria – the energy-producing "powerhouses" of eukaryote cells – is now thought to be the defining step in eukaryogenesis.
Mitochondria have different DNA to the cells in which they live, and the new paper addresses the possible origin of this symbiotic relationship, famously championed by the biologist Lynn Margulis.









