As a growing number of communities are forced to confront PFAS contamination in their groundwater, a key hurdle in addressing this harmful group of chemicals lies in unraveling how they move through a region of the environment called the unsaturated zone — a jumble of soil, rock and water sandwiched between the ground’s surface and the water table below.
A new study by University of Wisconsin–Madison researchers offers a simplified new way of understanding PFAS movement through this zone.
PFAS is an abbreviation for perfluoroalkyl and polyfluoroalkyl substances. The synthetic chemicals have been used for decades in products ranging from nonstick cookware to firefighting foams. Some PFAS chemicals are associated with health risks and can persist in the environment indefinitely. Modeling their flow through the unsaturated zone — also known as the vadose zone — is important because the chemicals can linger there for years or decades, all the while slowly leaching into aquifers many communities use to provide drinking water.

.jpg)


.jpg)

.jpg)


