![]() |
| The cavity string for the HB650 cryomodule after being assembled in April 2022. These cavities comprise the heart of the new cryomodule. Photo Credit: Lynn Johnson, Fermilab |
Technical staff at the U.S. Department of Energy’s Fermi National Accelerator Laboratory have completed a prototype of a special superconducting cryomodule, the first of its kind in the world. The national lab is home of the Proton Improvement Plan II, or PIP-II, a project to upgrade Fermilab’s particle accelerator complex.
The new high-beta 650-megahertz, or HB650, cryomodule is the longest and largest cryomodule in PIP-II. It will be responsible for accelerating protons to more than 80% of the speed of light. Ultimately, four of them will comprise the last section of the new linear accelerator, or linac, that will drive Fermilab’s accelerator complex.
In this final section of the linac, these superconducting cryomodules will power beams of protons to the final energy of 800 million electronvolts, or MeV, before the protons exit the linac. From there, the proton beam will transfer to the upgraded Booster and Main Injector accelerators, where it will gain more energy before being turned into a beam of neutrinos. These neutrinos will then be sent on a 1,300-kilometer journey through Earth to the Deep Underground Neutrino Experiment and the Long Baseline Neutrino Facility in Lead, South Dakota.

.jpg)







.jpg)