University of Minnesota researchers, along with a team at the National Institute of Standards and Technology (NIST), developed a breakthrough process for making spintronic devices that has the potential to become the new industry standard for semiconductors chips that are essential to computers, smartphones and many other electronics. The new process will allow for faster, more efficient spintronics devices that can be scaled down smaller than ever before.
The paper is published in Advanced Functional Materials.
“We believe we’ve found a material and a device that will allow the semiconducting industry to move forward with more opportunities in spintronics that weren’t there before for memory and computing applications,” said Jian-Ping Wang, senior author of the paper and professor in the College of Science and Engineering.
The semiconductor industry is constantly trying to develop smaller and smaller chips that can maximize energy efficiency, computing speed and data storage capacity in electronic devices. Spintronic devices, which leverage the spin of electrons rather than the electrical charge to store data, provide a promising and more efficient alternative to traditional transistor-based chips. These materials also have the potential to be non-volatile, meaning they require less power and can store memory and perform computing even after you remove their power source.


.jpg)



.jpg)
.jpg)

