. Scientific Frontline

Monday, May 15, 2023

Chemists Unravel Reaction Mechanism for Clean Energy Catalyst

Dmitry Polyansky (left) and David Grills in the pulse radiolysis lab where the research was conducted. Here, Grills programs a syringe pump that delivers the catalyst to the radiolysis cell. Polyansky adjusts the radiolysis cell inside a white insulated compartment.
Photo Credit: Brookhaven National Laboratory

Hydrogen, the simplest element on Earth, is a clean fuel that could revolutionize the energy industry. Accessing hydrogen, however, is not a simple or clean process at all. Pure hydrogen is extremely rare in nature, and practical methods to produce it currently rely on fossil fuels. But if scientists find the right chemical catalyst, one that can split the hydrogen and oxygen in water molecules apart, pure hydrogen could be produced from renewable energy sources such as solar power.

Now, scientists are one step closer to finding that catalyst. Chemists at the University of Kansas and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have unraveled the entire reaction mechanism for a key class of water-splitting catalysts. Their work was published today in Proceedings of the National Academy of Sciences.

“It’s very rare that you can get a complete understanding of a full catalytic cycle,” said Brookhaven chemist Dmitry Polyansky, a co-author of the paper. “These reactions go through many steps, some of which are very fast and cannot be easily observed.”

Sea anemone’s sweet efforts help reef ecosystems flourish

KAUST researchers have discovered how corals can thrive in nutrient-depleted oceans. Their study shows how sea anemones are able to recycle the essential nutrient Nitrogen.
Photo Credit: Morgan Bennett-Smith / King Abdullah University of Science and Technology

Tropical oceans are known for being low in nutrients, yet they support incredibly diverse and thriving reef ecosystems created by symbiotic cnidarians such as corals and anemones. This intriguing contradiction, referred to as the Darwin Paradox, has fascinated scientists ever since Charles Darwin first described it in 1842.

A group of researchers from KAUST conducted a study on sea anemones called Aiptasia. They found out that Aiptasia uses the sugar it gets from its partners to recycle waste in its body and survive in places where there are not many nutrients.

According to Guoxin Cui, a research scientist who worked on the project with Manuel Aranda, many studies in the past have tried to figure out where the limited nutrients in the ocean come from, especially nitrogen which is rare.

Guoxin Cui explains that some studies about coral have suggested that the partnership between coral and algae creates areas with lots of nutrients. But until now, researchers didn't fully understand how these organisms were able to create such large ecosystems.

Saturn’s rings younger than previously thought — just a few hundred million years

New research reveals that Saturn's rings are much younger than the planet itself.
Photo Credit: NASA/JPL/Space Science Institute.

Saturn’s rings are much younger than scientists once thought, according to new research from Indiana University Professor Emeritus of Astronomy Richard Durisen — and they are not here to stay.

For decades, there has been debate about the origin of Saturn’s icy rings. But according to two new studies from Durisen, published in Icarus, the rings are no more than a few hundred million years old — much younger than the planet itself, which formed 4.5 billion years ago. In fact, Durisen said the rings may well have formed when dinosaurs were still walking on the Earth.

Durisen and co-author Paul Estrada, a research scientist at NASA’s Ames Research Center in California’s Silicon Valley, also concluded that the rings will last only another few hundred million years at most.

“Our inescapable conclusion is that Saturn’s rings must be relatively young by astronomical standards, just a few hundred million years old,” Durisen said. “If you look at Saturn’s satellite system, there are other hints that something dramatic happened there in the last few hundred million years.”

Heat is the Top Cause of Exertion-Related Injuries and Fatalities for Laborers

This study is one of the first of its kind to evaluate exertion-related injuries and fatalities from word-related activities
Photo Credit: Jeriden Villegas

Dangers like working high above the ground or with heavy machinery are common hazards for laborers in industries like construction or excavation. But there’s another near-universal hazard for laborers – heat.

Margaret Morrissey, a postdoctoral fellow within UConn’s College of Agriculture, Health and Natural Resources and president of occupational safety for the Korey Stringer Institute, led a recently published study that found heat is the number one cause of exertion-related injuries and fatalities on U.S. work sites.

This work was recently published in the International Journal of Environmental Research and Public Health.

Using data reported to OSHA (Occupational Safety and Health Administration), the team found that of all injuries and fatalities, about 3% were exertion related. Of that 3%, a staggering 89% were related to heat stress.

Most species, including humans, who experience early life adversity suffer as adults. How are gorillas different?

Experienced the loss of her mother and father and the disintegration of her family group before the age of 5. Now 20, she has become a successful mother, raising three offspring.
Photo Credit: Dian Fossey Gorilla Fund

There’s something most species—from baboons to humans to horses—have in common: When they suffer serious adversity early in life, they’re more likely to experience hardship later on in life.

When researchers from the Dian Fossey Gorilla Fund and the University of Michigan decided to look at this question in gorillas, they weren’t sure what they would find.

Previous studies by the Fossey Fund revealed that young gorillas are surprisingly resilient to losing their mothers, in contrast to what has been found in many other species. But losing your mother is only one of many potential bad things that can happen to young animals.

“Assuming that you survive something that we consider early life adversity, it’s often still the case that you will be less healthy or you will have fewer kids or your lifespan will be shorter—no matter what species you are,” said Stacy Rosenbaum, U-M assistant professor of anthropology and senior author of the study. “There’s this whole range of things that happens to you that seems to just make your life worse in adulthood.”

Phage structure captured for the first time, to benefit biotech applications

Phage image
Image Credit: Dr Vicki Gold et al, Nature Communications

New insights into the structure of phages will enable researchers to develop new uses for viruses in biotechnology.

Phages are viruses that infect bacteria, which enables them to be exploited as tools in biotechnology and medicine. Now, for the first time, researchers at the University of Exeter, in collaboration with Massey University and Nanophage Technologies, New Zealand, have mapped out what a commonly-used form of phage looks like, which will help researchers design better uses in future.

One common use for phage is phage display, which is a useful tool in drug discovery. Phage display works by linking a gene fragment of interest to a phage gene that makes one of the phage coat proteins. The new coat protein with the linked protein of interest appears on the surface of the phage, where it can be assayed and tested for biological activity.

Billions of types of phages exist. Phage display often uses a type of phage known as filamentous, so called because they are long and thin, making the display of many proteins across its surface possible. Although phage display and other applications have proved successful, until now, scientists have not known what this type of phage looks like.

Combined delivery of engineered virus with immunotherapy is safe and improves outcomes in subset of patients with glioblastoma

From left to right: Frederick Lang, M.D., Juan Fueyo, M.D., and Candelaria Gomez-Manzano, M.D.
Image Credit: Courtesy of MD Anderson Cancer Center

Intratumoral delivery of an engineered oncolytic virus (DNX-2401) targeting glioblastoma (GBM) cells combined with subsequent immunotherapy was safe and improved survival outcomes in a subset of patients with recurrent GBM, according to results from a multi-institutional Phase I/II clinical trial co-led by researchers at The University of Texas MD Anderson Cancer Center and the University of Toronto.

The study, published today in Nature Medicine, met its primary safety endpoint and demonstrated the combination was well tolerated overall with no dose-limiting toxicities. The study did not meet its primary efficacy endpoint of objective response rate, but the combination achieved a 12-month overall survival (OS) rate of 52.7%, which is greater than the prespecified efficacy threshold of 20%. Three patients remained alive at 45, 48 and 60 months after treatment.

“This viral therapy is a different approach to the current standard of care,” said co-corresponding author Frederick Lang, M.D., chair of Neurosurgery. “Our previous trial demonstrated that not only does the virus act by killing cancer cells directly, it also effectively activates the innate immune system to convert these immunologically cold tumors into hot tumors. This led us to evaluate a combination with checkpoint inhibitors, which we now see can improve survival outcomes in a subset of patients.”

New priming method improves battery life, efficiency

Quan Nguyen (left), Sibani Lisa Biswal and collaborators developed a prelithiation technique that helps improve the performance of lithium-ion batteries with silicon anodes.
Photo Credit: Jeff Fitlow/Rice University

Silicon anode batteries have the potential to revolutionize energy storage capabilities, which is key to meeting climate goals and unlocking the full potential of electric vehicles.

However, the irreversible depletion of lithium ions in silicon anodes puts a major constraint on the development of next-generation lithium-ion batteries.

Scientists at Rice University’s George R. Brown School of Engineering have developed a readily scalable method to optimize prelithiation, a process that helps mitigate lithium loss and improves battery life cycles by coating silicon anodes with stabilized lithium metal particles (SLMPs).

The Rice lab of chemical and biomolecular engineer Sibani Lisa Biswal found that spray-coating the anodes with a mixture of the particles and a surfactant improves battery life by 22% to 44%. Battery cells with a greater amount of the coating initially achieved a higher stability and cycle life. However, there was a drawback: When cycled at full capacity, a larger amount of the particle coating led to more lithium trapping, causing the battery to fade more rapidly in subsequent cycles.

Gene-edited calf may reduce reliance on antimicrobials against cattle disease

 Brian Vander Ley, associate professor in the University of Nebraska–Lincoln’s School of Veterinary Medicine and Biomedical Sciences, works with Ginger, a Gir cow gene-edited with resistance to bovine viral diarrhea virus.
Photo Credit: Craig Chandler | University Communication and Marketing

Cattle worldwide face major health threats from a highly infectious viral disease that decades of vaccinations and other precautions have failed to contain. Federal, private-sector and Husker scientists are collaborating on a new line of defense, by producing a gene-edited calf resistant to the virus.

If follow-up research confirms its efficacy, the gene-editing approach offers long-term potential to reduce antimicrobial and antibiotic use in the cattle industry.

The bovine viral diarrhea virus devastates the bovine immune system and can cause severe respiratory and intestinal harm to infected beef and dairy cattle, said veterinary epidemiologist Brian Vander Ley, an associate professor in the University of Nebraska–Lincoln’s School of Veterinary Medicine and Biomedical Sciences.

In utero calves are especially vulnerable to infection. If they survive, they can remain infected for life, repeatedly spreading the virus to other cattle.

“They show up as normal cattle but really, they’re shedding a tremendous amount of virus. They’re the ‘Typhoid Marys’ of BVDV spread,” said Vander Ley, assistant director of UNL’s Great Plains Veterinary Educational Center in Clay Center.

Cost-effective and Non-toxic Substance Helps in the Extraction of Noble Metals

The new technology will help extract valuable components from complex raw materials.
Photo Credit: Rodion Narudinov

Scientists of the Ural Federal University have found a "solvent" (surfactant), lignosulfonate, which facilitates the transfer of noble metals into solution. Lignosulfonate is a waste product of pulp and paper industry, which is cheap and non-toxic. The scientists have effectively solved two serious problems at once: using a waste product along with processing ores and concentrates. The researchers published a description of the solvent's mechanism of action in the scientific journal Langmuir.

"We investigated the mechanism of action of a very complex surfactant that is at the same time a humectant, dispersant and stabilizer in terms of the surface of the ore concentrate. Lignosulfonate has been used in autoclave metal extraction technologies since the 1970s. However, its efficiency has not been sufficiently studied and the mechanism of action has not been subjectively investigated. Taking into account the fact that today different types of ores are processed, the use of lignosulfonate for processing becomes even more important," says Tatyana Lugovitskaya, co-author of the research, Assistant Professor Researcher of the UrFU Department of Non-Ferrous Metallurgy.

Featured Article

Hidden heartache of losing an animal companion

Chimmi April 09, 2010 -February 23, 2025 My best friend. Photo Credit: Heidi-Ann Fourkiller The emotional toll of losing a beloved pet durin...

Top Viewed Articles