. Scientific Frontline

Tuesday, June 6, 2023

‘Hot Jupiters’ may not be orbiting alone

Indiana University assistant professor of astronomy Songhu Wang.
Photo Credit: James Brosher, Indiana University

Research led by an Indiana University astronomer challenges longstanding beliefs about the isolation of “hot Jupiters” and proposes a new mechanism for understanding the exoplanets’ evolution.

While our Jupiter is far away from the sun, hot Jupiters are gas giant planets that closely orbit stars outside our solar system for an orbital period of less than 10 days. Previous studies suggested they rarely have any nearby companion planets, leading scientists to believe that hot Jupiters formed and evolved through a violent process that expelled other planets from the area as they moved closer to their host stars. The research team’s findings reveal that hot Jupiters do not always orbit alone.

“Our research shows that at least a fraction of hot Jupiters cannot form through a violent process,” said Songhu Wang, assistant professor of astronomy in the College of Arts and Sciences. “This is a significant contribution to advance our understanding of hot Jupiter formation, which can help us learn more about our own solar system.”

Researchers develop new innovative heat storage material for enhanced energy efficiency

Beads which can store heat, which would otherwise be wasted, from various sources, including industrial operations and the summer sun. The new material has been made using alginate, an inexpensive, abundant and non-toxic seaweed derivative.
Photo Credit: Courtesy of Swansea University

Researchers from the SPECIFIC Innovation and Knowledge Centre and COATED M2A programme at Swansea University have collaborated with the University of Bath to make a groundbreaking advancement in thermal storage research, developing a new efficient material that is easily scalable and can be sized and shaped to fit multiple applications.

Published in the Journal of Materials Science, the material has been made using alginate, an inexpensive, abundant and non-toxic seaweed derivative.

The process starts with the dissolving of sodium alginate in water. Following this, expanded graphite is added, and a method of gelation is chosen:

  • The first method is achieved by transferring the solution into a mold for freezing. After being kept at - 20°C for over two hours, beads are formed and transferred to a saturated calcium chloride solution.
  • The second uses a drop-cast technique, with the mixture being dropped into thermochemical calcium salt, causing gelation on contact.
  • Once sufficient salt diffusion has occurred, the synthesized beads are filtered and dried at 120°C.

Newly discovered brain mechanism linked to anxiety, OCD

Distinguished Professor Mario Capecchi, Ph.D. and Naveen Nagajaran, Ph.D.
Photo Credit: Charlie Ehlert/U of U Health

The pandemic and its aftermath have raised anxiety to new levels. But the roots of anxiety-related conditions, including obsessive-compulsive spectrum disorder (OCSD), are still unclear. In a new study, University of Utah Health scientists discovered insights into the importance of a minor cell type in the brain—microglia—in controlling anxiety-related behaviors in laboratory mice. Traditionally, neurons—the predominant brain cell type—are thought to control behavior.

The researchers showed that, like buttons on a game controller, specific microglia populations activate anxiety and OCSD behaviors while others dampen them. Further, microglia communicate with neurons to invoke the behaviors. The findings, published in Molecular Psychiatry, could eventually lead to new approaches for targeted therapies.

“A small amount of anxiety is good,” said Nobel Laureate Mario Capecchi, Ph.D., a distinguished professor of human genetics at the Spencer Fox Eccles School of Medicine at University of Utah and senior author of the study. “Anxiety motivates us, spurs us on, and gives us that extra bit of push that said, ‘I can.’ But a large dose of anxiety overwhelms us. We become mentally paralyzed, the heart beats faster, we sweat, and confusion settles in our minds.”

Scientists closing in on long-lasting swine flu vaccine

 A team led by Eric Weaver, associate professor of biological sciences, has developed a robust vaccine against a strain of swine influenza. Framed by a model of nucleic acid proteins is (from left) Weaver; Matt Pekarek, a graduate student in the Weaver Lab; Cedric Wooledge, a technician with the Institutional Animal Care Program; David Steffen, with the Nebraska Veterinary Diagnostic Center; and Nicholas Jeanjaquet and Erika Petro-Turnquist, both doctoral students in the Weaver Lab. Not pictured is Hiep Vu, assistant professor in the Nebraska Center for Virology and Department of Animal Science.
Photo Credit: Craig Chandler | University Communication and Marketing

A successful long-term experiment with live hogs indicates Nebraska scientists may be another step closer to achieving a safe, long-lasting and potentially universal vaccine against swine flu.

The results are not only important to the pork industry, they hold significant implications for human health. That’s because pigs act as “mixing vessels,” where various swine and bird influenza strains can reconfigure and become transmissible to humans. In fact, the 2009 swine flu pandemic, involving a variant of the H1N1 strain, first emerged in swine before infecting about a fourth of the global population in its first year, causing nearly 12,500 deaths in the United States and perhaps as many as 575,000 worldwide, according to the Centers for Disease Control and Prevention.

“Considering the significant role swine play in the evolution and transmission of potential pandemic strains of influenza and the substantial economic impact of swine flu viruses, it is imperative that efforts be made toward the development of more effective vaccination strategies in vulnerable pig populations,” said Erika Petro-Turnquist, a doctoral student and lead author of the study recently published in Frontiers in Immunology.

Tagged for arrest: “Barcode” determines receptor’s fate

Receptors of the G protein-coupled receptor family contain a specific recognition pattern that determines their fate.
Artwork Credit: Anna Golynski

Receptor proteins serve as the “eyes and ears” of the cell. The largest receptor family is the so-called G protein-coupled receptors. They respond to highly diverse stimuli ranging from photons to hormones and odorants. Researchers at the University of Basel have discovered a unique recognition pattern that works like a barcode and tags the receptor for desensitization. By this mechanism, signaling in cells is rapidly switched off when it is no longer needed.

Odors, light, hormones and a tremendous variety of signaling molecules are recognized by a large family of cell receptors, known as G protein-coupled receptors (GPCRs). They are located on the cell surface and transduce signals into physiological outputs, for example, a rapid heartbeat triggered by fear or inflammation caused by infections. Due to its crucial role in many vital processes, this receptor family is implicated in a wide range of diseases, such as depression, cancer, inflammation, or cardiovascular diseases.

Fine-tuning 3D lab-grown mini tumors to help predict how patients respond to cancer therapies

The improved process allows researchers to use an advanced imaging method to study and analyze individual organoids in great detail.
Image Credit: Soragni Lab.

Scientists from the UCLA Jonsson Comprehensive Cancer Center have developed a new method to bio-print miniature tumor organoids that are designed to mimic the function and architecture of real tumors. The improved process allows researchers to use an advanced imaging method to study and analyze individual organoids in great detail, which can help researchers identify personalized treatments for people with rare or hard-to-treat cancers.

The method is described in the journal Nature Communications.

“Tumor organoids have become fundamental tools to investigate tumor biology and highlight drug sensitivities of individual patients,” said Alice Soragni, PhD, an assistant professor in the department of Orthopedic Surgery at the David Geffen School of Medicine at UCLA and member of the UCLA Jonsson Comprehensive Cancer Center. “However, we still need better ways to anticipate if resistance could be arising in a small population of cells, which we may not detect using conventional screening approaches. This is truly important, particularly as organoid-based drug predictions are starting to be leveraged clinically.”

To Prevent Future Pandemics, Leave Bats Alone

Photo Credit: Clement Kolopp

A new paper in the journal The Lancet Planetary Health makes the case that pandemic prevention requires a global taboo whereby humanity agrees to leave bats alone—to let them have the habitats they need, undisturbed.

Like the SARS coronavirus outbreak of 2003, the COVID-19 pandemic can be traced back to a bat virus. Whether someone handled or ate an infected bat or was exposed to a bat’s bodily fluids in a cave or some other way, or was exposed to another animal that had been infected by a bat, we will quite likely never know. Even a virus released via a lab accident would still have originally come from a bat. But we don’t need to know all of the details in order to act.

Bats are known to be reservoirs for a wide range of viruses that can infect other species, including people. They are a source of rabies, Marburg filoviruses, Hendra and Nipah paramyxoviruses, coronaviruses such as Middle East Respiratory Syndrome (MERS) Coronavirus, and fruit bats are strongly believed to be a source of Ebolaviruses. A new analysis points to the value of a global taboo whereby humanity agrees to leave bats alone—not fear them or try to chase them away or cull them (activities that only serve to disperse them and increase the odds of zoonotic spillover)—but to let them have the habitats they need and live undisturbed.

A lung injury therapy derived from adult skin cells

Natalia Higuita-Castro, seated, with the core team that worked in the lab on this study during the COVID-19 lockdown (L-R): Maria Angelica Rincon-Benavides, a PhD student in the Biophysics Graduate Program, and biomedical engineering postdoctoral fellows Ana Salazar-Puerta and Tatiana Cuellar-Gaviria.
Photo Credit: Matt Schutte

Therapeutic nanocarriers engineered from adult skin cells can curb inflammation and tissue injury in damaged mouse lungs, new research shows, hinting at the promise of a treatment for lungs severely injured by infection or trauma.

Researchers conducted experiments in cell cultures and mice to demonstrate the therapeutic potential of these nanoparticles, which are extracellular vesicles similar to the ones circulating in humans’ bloodstream and biological fluids that carry messages between cells. 

The hope is that a drop of solution containing these nanocarriers, delivered to the lungs via the nose, could treat acute respiratory distress syndrome (ARDS), one of the most frequent causes of respiratory failure that leads to putting patients on a ventilator. In ARDS, inflammation spiraling out of control in the lungs so seriously burdens the immune system that immune cells are unable to tend to the initial cause of the damage. 

Researchers Identify Genetic Makeup of New Strains of West Nile

This study shows the variety of strains in circulation and what mosquitoes may be carrying as we head into summer
Photo Credit: Jimmy Chan

Researchers at Connecticut Veterinary Medical Diagnostic Laboratory (CVMDL) located in UConn’s College of Agriculture, Health and Natural Resources identified the genetic makeup of strains of West Nile virus found in an alpaca and a crow.

These findings were published in Frontiers in Veterinary Science.

In 2021, eight cases of West Nile virus were brought to the CVMDL for diagnosis – seven birds, both domestic and wild – and one alpaca.

“We decided to pursue some research avenues through these diagnostic cases because we had an interesting cohort of West Nile cases that had come through that fall,” says Natalie Tocco ’23 (CAHNR), a resident in anatomic pathology the Department of Pathobiology and Veterinary Science.

Of the eight cases, the alpaca from Massachusetts and a crow from Connecticut had the highest amount of virus in their systems at the time of diagnosis.

Focusing on these two cases, the researchers were interested in seeing if there were genetic differences between the viruses because they occurred in different species in different states.

Organic light-emitting diodes: the blue shines brighter and longer

Thanks to a new type of molecule, blue OLEDs should shine brighter in the future and fade less quickly.
Photo Credit: Markus Breig, KIT

Two-channel intra / intermolecular exciplex emission enables efficient deep blue electroluminescence.

Organic LEDs, or OLEDs for short, are characterized by energy efficiency and flexibility. But one challenge lies in the production of blue OLEDs - these have so far lacked luminance and stability. Researchers at the Karlsruhe Institute of Technology (KIT) and at Shanghai University have now developed a new strategy for producing efficient deep blue OLEDs: A specially produced novel molecule enables two-channel intra / intermolecular exciplex emission with electronic excitation, thereby allowing deep blue electroluminescence. The researchers report in the journal Science Advances.

Organic LEDs are already in many smartphones, tablets and large-scale TVs. They do not require additional backlighting and are therefore energy-efficient, can be produced inexpensively using thin-film technology and also work on flexible substrates, which enables flexible displays and variable room lighting solutions. An OLED (stands for: organic light-emitting diode) consists of two electrodes, at least one of which is transparent. In between are thin layers of organic semiconducting materials. The lighting is created by electroluminescence. When creating an electric field, electrons from the cathode and holes (positive charges) from the anode are injected into the organic materials that act as emitters. Electrons and holes meet there and form electron-hole pairs. These then disintegrate into their initial state and release energy that the organic materials use to emit light. All colors are created by mixing the three colors blue, green and red.

Featured Article

Cat Disease Challenges What Scientists Thought About Coronaviruses

Lychee had feline infectious peritonitis, a feline coronavirus. He was part of a clinical trial at the UC Davis School of Veterinary Medicin...

Top Viewed Articles