. Scientific Frontline

Thursday, June 15, 2023

Energy Harvesting Via Vibrations: Researchers develop highly durable and efficient device

The principle, structural design, and application of carbon fiber-reinforced polymer-enhanced piezoelectric nanocomposite materials.
Illustration Credit: ©Tohoku University

An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.

Details of the group's research were published in the journal Nano Energy.

Energy harvesting involves converting energy from the environment into usable electrical energy and is something crucial for ensuring a sustainable future.

"Everyday items, from fridges to street lamps, are connected to the internet as part of the Internet of Things (IoT), and many of them are equipped with sensors that collect data," says Fumio Narita, co-author of the study and professor at Tohoku University's Graduate School of Environmental Studies. "But these IoT devices need power to function, which is challenging if they are in remote places, or if there are lots of them."

Dietary supplementation shown to improve nutrition biomarkers in study of older men

Photo Credit: Andrea

A six-month study of healthy older men demonstrated that daily multivitamin/multimineral supplementation had a positive effect on key nutrition biomarkers.

The research led by Oregon State University’s Tory Hagen and Alexander Michels also showed that the changes in nutrition status could have direct connections to cellular function, measured by the oxygen consumption of the study participants’ blood cells.

The findings, published in the journal Nutrients, suggest that supplementation may be a key tool to help people stay healthier as they age.

“Many older adults take multivitamins, thinking it will help them stay healthy,” said Michels, a research associate at OSU’s Linus Pauling Institute. “However, previous studies have shown mixed results when it comes to multivitamins and disease risk. We wanted to know why there was so much uncertainty. Is it possible that multivitamins aren’t as effective at changing nutrition biomarkers in older adults?”

Elimination of type of bacteria suggests treatment for endometriosis

Fusobacterium (white dots) is highly expressed near the uterus (endometrium) of endometriosis patients.
Image Credit: Professor Yutaka Kondo

A research group from the Graduate School of Medicine and iGCORE at Nagoya University in Japan, has discovered that using an antibiotic to target Fusobacterium reduced the formation of lesions associated with endometriosis, a gynecological disorder characterized by endometrial tissue usually found inside the uterus being found outside it. Their findings suggest an alternative treatment for this disorder. The study was published in Science Translational Medicine.

Endometriosis affects one in ten women between the ages of 15 and 49. The disorder can cause lifelong health problems, including pelvic pain and infertility. Although it can be treated using hormone therapy and surgical resection, these procedures sometimes lead to side effects, recurrence, and a significant impact on pregnancy.

The group led by Professor Kondo (he, him) and Assistant Professor Ayako Muraoka (she, her) from the Nagoya University Graduate School of Medicine, in collaboration with the National Cancer Center, found that the uterus of mice infected with Fusobacterium had more and heavier lesions. However, mice that had been given an antibiotic to eradicate Fusobacterium saw improved lesion formation.

Wednesday, June 14, 2023

UC Irvine scientists create long-lasting, cobalt-free, lithium-ion batteries

“We are basically the first group that started thinking about the supply chain, or the pain point, that nickel will bring to the EV industry in a matter of, I would say, three to five years,” says Huolin Xin, UCI professor of physics & astronomy, lead author of a paper in Nature Energy on a new way to use nickel in lithium-ion batteries.
Photo Credit: Steve Zylius / UCI

In a discovery that could reduce or even eliminate the use of cobalt – which is often mined using child labor – in the batteries that power electric cars and other products, scientists at the University of California, Irvine have developed a long-lasting alternative made with nickel.

“Nickel doesn’t have child labor issues,” said Huolin Xin, the UCI professor of physics & astronomy whose team devised the method, which could usher in a new, less controversial generation of lithium-ion batteries. Until now, nickel wasn’t a practical substitute because large amounts of it were required to create lithium batteries, he said. And the metal’s cost keeps climbing.

To become an economically viable alternative to cobalt, nickel-based batteries needed to use as little nickel as possible.

“We’re the first group to start going in a low-nickel direction,” said Xin, whose team published its findings in the journal Nature Energy. “In a previous study by my group, we came up with a novel solution to fully eliminate cobalt. But that formulation still relied on a lot of nickel.”

Photosynthesis, Key to Life on Earth, Starts with a Single Photon

A cutting-edge experiment has revealed the quantum dynamics of one of nature’s most crucial processes
Illustration Credit: Jenny Nuss/Berkeley Lab

Using a complex cast of metal-studded pigments, proteins, enzymes, and co-enzymes, photosynthetic organisms can convert the energy in light into the chemical energy for life. And now, thanks to a study published today in Nature, we know that this organic chemical reaction is sensitive to the smallest quantity of light possible – a single photon.

The discovery solidifies our current understanding of photosynthesis and will help answer questions about how life works on the smallest of scales, where quantum physics and biology meet.

“A huge amount of work, theoretically and experimentally, has been done around the world trying to understand what happens after a photon is absorbed. But we realized that nobody was talking about the first step. That was still a question that needed to be answered in detail,” said co-lead author Graham Fleming, a senior faculty scientist in the Biosciences Area at Lawrence Berkeley National Laboratory (Berkeley Lab) and professor of chemistry at UC Berkeley.

In their study, Fleming, co-lead author Birgitta Whaley, a senior faculty scientist in the Energy Sciences Area at Berkeley Lab, and their research groups showed that a single photon can indeed initiate the first step of photosynthesis in photosynthetic purple bacteria. Because all photosynthetic organisms use similar processes and share an evolutionary ancestor, the team is confident that photosynthesis in plants and algae works the same way. “Nature invented a very clever trick,” Fleming said.

Plate tectonics not required for the emergence of life

Plate tectonics involves the horizontal movement and interaction of large plates on Earth’s surface. New research indicates that mobile plate tectonics—thought to be necessary for the creation of a habitable planet—was not occurring on Earth 3.9 billion years ago.
Illustration Credit: Michael Osadciw / University of Rochester

The finding contradicts previous assumptions about the role of mobile plate tectonics in the development of life on Earth.

Scientists have taken a journey back in time to unlock the mysteries of Earth’s early history, using tiny mineral crystals called zircons to study plate tectonics billions of years ago. The research sheds light on the conditions that existed in early Earth, revealing a complex interplay between Earth’s crust, core, and the emergence of life.

Plate tectonics allows heat from Earth’s interior to escape to the surface, forming continents and other geological features necessary for life to emerge. Accordingly, “there has been the assumption that plate tectonics is necessary for life,” says John Tarduno, who teaches in the Department of Earth and Environmental Sciences at the University of Rochester. But new research casts doubt on that assumption.

New Clues About Origin of Complex Life Trace Roots to Common Ancestor

According to this latest study, all complex life forms (a.k.a. eukaryotes) trace their roots back to a common ancestor among a group of microbes called the Asgard archaea.
Illustration Credit: The University of Texas at Austin.

Thor, the legendary Norse god from the mythological city of Asgard, is not alone. According to groundbreaking research published in the journal Nature, we humans — along with eagles, starfish, daisies and every complex organism on Earth — are, in a sense, Asgardians.

Analyzing the genomes of hundreds of different microbes called archaea, researchers at The University of Texas at Austin and other institutions have discovered that eukaryotes — complex life forms with nuclei in their cells, including all the world’s plants, animals, insects and fungi — trace their roots to a common Asgard archaean ancestor. That means eukaryotes are, in the parlance of evolutionary biologists, a “well-nested clade” within Asgard archaea, similar to how birds are one of several groups within a larger group called dinosaurs, sharing a common ancestor. The team has found that all eukaryotes share a common ancestor among the Asgards.

No fossils of eukaryotes have been found from farther back than about 2 billion years ago, suggesting that before that, only various types of microbes existed.

“So, what events led microbes to evolve into eukaryotes?” said Brett Baker, UT Austin associate professor of integrative biology and marine science. “That’s a big question. Having this common ancestor is a big step in understanding that.”

New Insights into the Liquid Core of Mars

The RISE instrument on the InSight lander (artist’s concept).
Image Credit: NASA/JPL-Caltech.

New results from the radio-science instrument of the NASA InSight mission on Mars are published today in the scientific journal Nature. With the data accumulated during the first two and a half years of the mission, a team of planetary scientists mainly from the Royal Observatory of Belgium has precisely measured the rotation of Mars. They detected a signature that can only be explained by the presence of a liquid core. These variations in rotation provide important information about the deep interior of Mars.

In November 2018, the NASA InSight mission successfully touched down in the region of Elysium Planitia on the surface of Mars. As suggested by its acronym (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport), this mission was the first of its kind, dedicated to the exploration of the deep interior of Mars. InSight was equipped with a seismometer and a radio-science transponder named RISE (Rotation and Interior Structure Experiment). The mission concluded in December 2022.

The RISE experiment was specifically designed to measure the nutations of Mars. Nutations are the periodic oscillations, also called wobbles, of the spin axis in space. Sébastien Le Maistre, the lead author explains: “The RISE transponder has the ability to establish communication with gigantic (up to 70 m dish) radio-telescopes on Earth and of measuring the tiniest variations of the distance between a lander on Mars and Earth, caused by the orbital and rotational movements of the two planets. For the first time, we detected at such a large distance, hundreds of millions of km, the 40 cm oscillations due to the presence of the Martian liquid core. These oscillations are affected by a resonant behavior that only occurs when the core is liquid.”

Scientists Discover Small RNA That Regulates Bacterial Infection

Pseudomonas aeruginosa clumps grown in synthetic cystic fibrosis sputum.
Image Credit: Courtesy of Georgia Institute of Technology

People with weakened immune systems are at constant risk of infection. Pseudomonas aeruginosa, a common environmental bacterium, can colonize different body parts, such as the lungs, leading to persistent, chronic infections that can last a lifetime – a common occurrence in people with cystic fibrosis.

But the bacteria can sometimes change their behavior and enter the bloodstream, causing chronic localized infections to become acute and potentially fatal. Despite decades of studying the transition in lab environments, how and why the switch happens in humans has remained unknown.

However, researchers at the Georgia Institute of Technology have identified the major mechanism behind the transition between chronic and acute P. aeruginosa infections. Marvin Whiteley – professor in the School of Biological Sciences and Bennie H. and Nelson D. Abell Chair in Molecular and Cellular Biology – and Pengbo Cao, a postdoctoral researcher in Whiteley’s lab, discovered a gene that drives the switch. By measuring bacterial gene expression in human tissue samples, the researchers identified a biomarker for the transition.

Their research findings, published in Nature, can inform the development of future treatments for life-threatening acute infections.

A New Magnetizable Shape Memory Alloy with Low Energy Loss, Even at Low Temperatures

Image Credit: Scientific Frontline

Shape memory alloys (SMA) remember their original shape and return to it after being heated. Similar to how a liquid transforms into a gas when boiled, SMAs undergo a phase transformation when heated or cooled. The phase transformation occurs with the movement of atoms, which is invisible to the naked eye.

SMAs are utilized in a diverse array of applications, including as actuators and sensors. However, the need to cool or heat SMAs means there is a delay in their phase transformation.

As a recently invented type of SMA, metamagnetic shape memory alloys (MMSMA) negate this limited response rate thanks to their ability to undergo phase transformation when exposed to an external magnetic field. Yet to date, MMSMAs have failed to solve another common problem with most SMAs: the fact that they lose a large amount of energy when phase transforming - something that worsens substantially in low temperatures.

Featured Article

What Is: Nuclear Winter

A Planetary System Collapse Image Credit: Scientific Frontline Scientific Frontline: Extended"At a Glance" Summary The Core Concep...

Top Viewed Articles