![]() |
| Soumyabrata Roy is a Rice University postdoctoral research associate in materials science and nanoengineering and the study’s lead author. Photo Credit: Gustavo Raskosky/Rice University |
The lab of Rice University materials scientist Pulickel Ajayan and collaborators developed a way to wrest the carbon from carbon dioxide and affix it to hydrogen atoms, forming methane ⎯ a valuable fuel and industrial feedstock. According to the study published in Advanced Materials, the method relies on electrolysis and catalysts developed by grafting isolated copper atoms on two-dimensional polymer templates.
“Electricity-driven carbon dioxide conversion can produce a large array of industrial fuels and feedstocks via different pathways,” said Soumyabrata Roy, a research scientist in the Ajayan lab and the study’s lead author. “However, carbon dioxide-to-methane conversion involves an eight-step pathway that raises significant challenges for selective and energy-efficient methane production.
“Overcoming such issues can help close the artificial carbon cycle at meaningful scales, and the development of efficient and affordable catalysts is a key step toward achieving this goal.”
.jpg)








