. Scientific Frontline

Tuesday, October 10, 2023

Rice-engineered material can reconnect severed nerves

Rice University doctoral alum Joshua Chen is lead author on a study published in Nature Materials.
 Photo Credit: Gustavo Raskosky/Rice University

Researchers have long recognized the therapeutic potential of using magnetoelectrics ⎯ materials that can turn magnetic fields into electric fields ⎯ to stimulate neural tissue in a minimally invasive way and help treat neurological disorders or nerve damage. The problem, however, is that neurons have a hard time responding to the shape and frequency of the electric signal resulting from this conversion.

Rice University neuroengineer Jacob Robinson and his team designed the first magnetoelectric material that not only solves this issue but performs the magnetic-to-electric conversion 120 times faster than similar materials. According to a study published in Nature Materials, the researchers showed the material can be used to precisely stimulate neurons remotely and to bridge the gap in a broken sciatic nerve in a rat model.

The material’s qualities and performance could have a profound impact on neurostimulation treatments, making for significantly less invasive procedures, Robinson said. Instead of implanting a neurostimulation device, tiny amounts of the material could simply be injected at the desired site. Moreover, given magnetoelectrics’ range of applications in computing, sensing, electronics and other fields, the research provides a framework for advanced materials design that could drive innovation more broadly.

Common diabetes drug could treat gum disease and help you age healthier

Photo Credit: Cedric Fauntleroy

In their latest publication in the Journal of Translational Medicine, a team of researchers at the Faculty of Dentistry, Oral & Craniofacial Sciences have found new ways of stopping periodontal (gum) disease and potentially reducing the incidence of diabetes and obesity. This new approach focuses on controlling inflammation and sugar levels in both the mouth and body with a common type 2 diabetes drug, Metformin.

Periodontal (gum) diseases are strikingly common across the globe and are strongly associated with systemic conditions such as diabetes and obesity. Lifestyle choices such as increased sugar intake are a common cause of gum disease, as well as diabetes and obesity. Diabetes, obesity and gum disease all develop over our lifetime, but gum disease has the potential to be picked up first as it can start at as early as 30 years old.

The only treatment strategy currently available to tackle gum disease is to deep clean the teeth to rid the mouth of bacteria, as well as prescribing antibiotics. But this treatment does not protect against the continuation and development of systemic associated diseases, such as diabetes and obesity.

Researchers identify largest ever solar storm in tree rings

Artist illustration of events on the sun changing the conditions in Near-Earth space. Suggested imagery from NASA, as recommended by our researchers.
Illustration Credit: NASA

An international team of scientists have discovered a huge spike in radiocarbon levels 14,300 years ago by analyzing ancient tree-rings found in the French Alps.

The radiocarbon spike was caused by a massive solar storm, the biggest ever identified.  A similar solar storm today would be catastrophic for modern technological society – potentially wiping out telecommunications and satellite systems, causing massive electricity grid blackouts, and costing us billions of pounds.  

The academics are warning of the importance of understanding such storms to protect our global communications and energy infrastructure for the future. 

Superconducting niobium waveguide achieves high-precision communications for B5G/6G networks

Researchers fabricated 20mm length waveguides made of the superconducting metal niobium (right).  It shows improved conductivity compared with normal metal materials such as a gold-plated tellurium copper (middle)  and aluminum alloy (left), and can transmit radio waves that are necessary for B5G/6G communications. 
Photo Credit: Taku Nakajima

A team of researchers has made a breakthrough discovery in the world of Beyond 5G/6G (B5G/6G) signal transmission. Taku Nakajima and Kazuji Suzuki of Nagoya University in Japan, along with their collaborators, created a waveguide made of niobium that speeds up the transition of B5G/6G signals.  

The frequency of data waves has continued to increase as B5G/6G technologies have been introduced. Although the currently used metal transmission lines can handle B5G/6G, research has focused on superconducting metals, such as niobium, that have lower transmission loss and can handle higher frequencies.  

Nakajima and his collaborators evaluated the use of niobium in a waveguide, a three-dimensional transmission line consisting of a metal tube that guides and confines waves along a specific path, minimizing losses due to radiation and absorption. However, working with the metal proved to be difficult as it was susceptible to deformation and damage during fabrication and handling.  

Scientists identify new pathway activated by interferon-gamma that leads to tumor cell death

Ameya Champhekar, first author of the study.
Photo Credit: Courtesy of UCLA Health

Researchers at the UCLA Jonsson Comprehensive Cancer Center have identified a new role for a protein called extracellular signal-regulated kinase (ERK) in a pathway activated by interferon-gamma that can trigger cells to self-destruct.

Researchers found that interferon-gamma signaling caused hyperactivation of ERK in human melanoma cell lines. The ERK protein, when hyperactive, causes stress in the cell, and this stress ultimately leads to cell death through specific proteins called DR5 and NOXA. Cell death could be prevented in 74% of these lines when ERK signaling was blocked.

“ERK signaling is always active at a low level in melanoma cells and is important for tumor cell survival,” said Ameya Champhekar, an adjunct assistant professor of medicine at the David Geffen School of Medicine at UCLA, and first author of the study. “However, our data show that interferon-gamma causes overactivation of the ERK pathway, which triggers cell death. This establishes a new paradigm in the field that the overactivation of a pathway involved in oncogenic signaling is detrimental to cancer cells. This discovery sheds light on how interferon-gamma stops tumor cell growth and why it might not always work, helping us better understand how to overcome resistance.”

How plant-derived nutrients can affect the gut and brain

PD Dr. Veronica Witte
Photo Credit: Leipzig University/Antje Gildemeister

Can plant-derived nutrients alter gut bacteria to affect brain function? Scientists from the University of Leipzig Medical Center, the Max Planck Institute for Human Cognitive and Brain Sciences and the Helmholtz Centre for Environmental Research investigated this question in a study of overweight adults. Their findings, published in the journal Gut, suggest that dietary fiber can exert influence on both the composition of gut bacteria and the reward signals in the brain and associated food decision-making.

Prebiotics are used to foster the colonization of beneficial bacteria in the gut. These indigestible dietary fibers are found in plant-derived foods such as onions, leeks, artichokes, wheat, bananas, and in high concentrations in chicory root. They support gut health by promoting the growth and activity of beneficial gut bacteria. Researchers have now investigated whether certain prebiotics can also influence brain function by improving communication between the gut microbiome and the brain.

Red Algae Could Be Used to Create a Drug for Coronavirus

Chemical research on Laurencia red algae began in 1965.
Photo Credit: 🇸🇮 Janko Ferlič

Laurencia red algae can be used as a basis for new drugs against the SARS-CoV-2 virus, biochemists have found. A team of scientists from the Ural Federal University, the Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences, together with colleagues from Australia and Germany, carried out molecular docking of 300 bioactive components (ligands) of red algae and found seven compounds with the required activity. The scientists published a description of the experiments and results in the journal Microbiology Research

"Laurencia belongs to the family Rhodomelaceae, which is considered one of the largest families of marine red algae, with an estimated 125 genera and 700 species worldwide. Laurencia has recently been the subject of active research. Since 2015, a total of 1,047 secondary metabolites with various useful properties have been isolated from Laurencia species alone," explains Grigory Zyryanov, Chief Researcher of the UrFU Laboratory of Advanced Materials, Green Methods and Biotechnology.

Monday, October 9, 2023

Predicting prostate cancer recurrence 15 months faster

Hector Gomez, a professor in Purdue University’s School of Mechanical Engineering, and his international collaborators have developed a patent-pending method and algorithm to predict the recurrence of prostate cancer in patients treated by radiation therapy.
Photo Credit: Purdue University/Vincent Walter

A Purdue University mechanical engineer and his international collaborators have developed a patent-pending method and algorithm to predict the recurrence of prostate cancer in patients treated by radiation therapy.­

Hector Gomez, a professor in Purdue University’s School of Mechanical Engineering, said data indicates the model-based predictors can identify relapsing patients a median of 14.8 months earlier than the current clinical practice.

Gomez said radiation is an effective treatment for patients of all ages to treat tumors ranging in risk from low to very high. According to Johns Hopkins Medicine, between 20% to 30% of patients will experience a recurrence after the five-year period, post-therapy.

“The detection of prostate cancer recurrence after radiation relies on the measurement of a sustained rise of the serum levels of a substance called prostate-specific antigen, or PSA,” Gomez said. “However, the recurrence may take years to occur, which delays the delivery of a secondary treatment to patients with recurring tumors.”

Study identifies biomarker that could lead to better treatment for autoimmune disease

Emily Vance and Ruth Napier, Ph.D., assistant professor of molecular microbiology and immunology, arthritis and rheumatic disease in the OHSU School of Medicine, a principal investigator with VA Portland, look through some of their microscope work.
Photo Credit: OHSU/Christine Torres Hicks

New research that helps explain the molecular processes involved in the painful autoimmune disease ankylosing spondylitis, or AS, may reduce the guessing game that health care providers currently play while attempting to treat the condition.

A team from Oregon Health & Science University and the VA Portland Health Care System has found a specific kind of AS treatment that is effective when used by patients who have a particular genetic mutation. Their study was published today in the journal Annals of the Rheumatic Diseases, and its findings could lead to more targeted, timely and patient-specific treatment recommendations.

“This is the first-time research has shown that we might be able to use genetic markers to determine which therapy ankylosing spondylitis patients should receive,” said the study’s senior researcher, Ruth Napier, Ph.D., assistant professor of molecular microbiology and immunology, arthritis and rheumatic disease in the OHSU School of Medicine, and principal investigator with VA Portland. “These promising findings are encouraging. This is the first time I can say that I’m on the cusp of making a difference for patients with ankylosing spondylitis who seek relief.”

Mushroom-derived materials could offer benefits for developing nations in Africa

Mycelium composites are a class of materials based on mycelium – the roots of mushrooms.
Photo Credit: Heidi-Ann Fourkiller | Scientific Frontline

A research team from the University of Bristol has suggested that mycelium composites could offer a sustainable alternative to traditional building materials and help address socio-economic and environmental challenges in Africa.

In a new paper published in the journal Advanced Sustainable Systems, Lead Author Stefania Akromah, a PhD student in the Centre for Doctoral Training in Composites Science, Engineering, and Manufacturing, suggests that while holding a lot of potential benefits, mycelium composite technology has yet to become established in the African continent.

Mycelium composites are a class of materials based on mycelium – the roots of mushrooms. These versatile materials, which have gained popularity in Europe and the US in the past decade, are produced by harnessing the ability of fungi to grow by feeding on organic biomass – eliminating the need for high-end manufacturing processes.  In fact, mycelium composites can be grown almost anywhere - even at home - without the need for extensive expertise or advanced equipment.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles