![]() |
Image Credit: Yaoye Hong |
Researchers have created a polymer “Chinese lantern” that can snap into more than a dozen curved, three-dimensional shapes by compressing or twisting the original structure. This rapid shape-shifting behavior can be controlled remotely using a magnetic field, allowing the structure to be used for a variety of applications.
The basic lantern object is made by cutting a polymer sheet into a diamond-like parallelogram shape, then cutting a row of parallel lines across the center of each sheet. This creates a row of identical ribbons that is connected by a solid strip of material at the top and bottom of the sheet. By connecting the left and right ends of the solid strips at top and bottom, the polymer sheet forms a three-dimensional shape resembling a roughly spherical Chinese lantern.
“We found that we could create many additional shapes by applying a twist to the shape, by folding the solid strips at the top or bottom of the lantern in or out, or any combination of those things,” says Yaoye Hong, first author of the paper and a former Ph.D. student at NC State who is now a postdoctoral researcher at the University of Pennsylvania. “Each of these variations is also multistable. Some can snap back and forth between two stable states. One has four stable states, depending on whether you’re compressing the structure, twisting the structure, or compressing and twisting the structure simultaneously.”
By attaching a thin magnetic film to the solid strip at the bottom of the structure, the researchers were able to compress or twist the structures remotely, using a magnetic field. They then demonstrated several applications that made use of snapping between two stable shapes. These applications included a noninvasive gripper for grasping fish; a filter that opened and closed to control the flow of water; and a compact shape that rapidly expanded into a tall shape to open a collapsed tube.
The researchers also developed a mathematical model that captures the way in which different angles in the structure control both the shape of each variation and the amount of energy that is stored in each stable state.
“This model allows us to program the shape we want to create, how stable it is, and how powerful it can be when stored potential energy is allowed to snap into kinetic energy,” says Hong. “And all of those things are critical for creating shapes that can perform desired applications.”
“Moving forward, these lantern units can be assembled into 2D and 3D architectures for broad applications in shape-morphing mechanical metamaterials and robotics,” says Yin. “We will be exploring that.”
Funding: This work was done with support from the National Science Foundation under grants 2005374, 2369274 and 2445551.
Published in journal: Nature Materials
Title: Reprogrammable snapping morphogenesis in ribbon-cluster meta-units using stored elastic energy
Authors: Yaoye Hong, Caizhi Zhou, Haitao Qing, Yinding Chi, and Jie Yin
Source/Credit: North Carolina State University | Matt Shipman
Reference Number: ms101125_01