DNA, RNA, and proteins are three pillars of molecular biology. While DNA holds genetic instructions and proteins put these plans to action, RNA serves as the messenger and interpreter. DNA is transcribed to RNA, which then decodes those instructions to synthesize proteins. But large portions of RNA don't proceed to produce proteins, with a vast majority remaining just as RNA. What these molecules do or why they exist in such a state is still not fully understood.
Now, scientists have developed a promising method to uncover RNA’s secrets. Using X-ray free-electron laser sources such as the Linac Coherent Light Source at the Department of Energy’s SLAC National Accelerator Laboratory, researchers can now observe fine details, right down to angstrom-scale features, in RNA that is freely dispersed in solution so that large scale structural changes can occur – just as they would in our bodies. Not only does this research shed light on RNA's behavior, but the techniques developed can also be applied to other biological molecules. The implications are far-reaching, from better understanding diseases to designing new therapeutics. The results were published last week in Science Advances.


.jpg)



.jpg)


.jpg)