PSI researchers are using neutrons to make changes in battery electrolytes visible. The analysis enables better understanding of the physical and chemical processes and could aid in the development of batteries with better characteristics. The results have now been published in Science Advances.
The range is too limited, charging is too slow when it’s cold . . . the list of prejudices against electric cars is long. Even though progress is rapid, batteries remain the critical component for electromobility – as well as for many other applications, from smartphones to large storage devices designed to stabilize the power grid. The problem: Battery developers still lack a full understanding of what is happening, chemically and physically, during charging and discharging, especially in liquid electrolytes between the two electrodes through which charge carriers are exchanged.
Now Eric Ricardo Carreon Ruiz of PSI is bringing light into this darkness. A doctoral researcher in Pierre Boillat’s group at PSI, he is using neutrons from the Swiss spallation neutron source SINQ to investigate different electrolytes, studying for example their behavior at fluctuating temperatures. His results provide important insights that could help in the development of new electrolytes and higher-performance batteries.