. Scientific Frontline: NASA Reveals New Details About Dark Matter’s Influence on the Universe

Monday, January 26, 2026

NASA Reveals New Details About Dark Matter’s Influence on the Universe

Created using data from NASAs Webb telescope in 2026 (right) and from the Hubble Space Telescope in 2007 (left), these images show the presence of dark matter in the same region of sky. Webb's higher resolution is providing new insights into how this invisible component influences the distribution of ordinary matter in the universe.
Image Credit:NASA/STScl/A Pagan

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: A highly detailed map of dark matter distribution created using data from the James Webb Space Telescope (JWST), revealing the invisible "scaffolding" that structures the universe.

Key Distinction/Mechanism: Unlike previous, blurrier maps, this new visualization is twice as sharp and provides empirical confirmation that dark matter and ordinary matter are tightly interlocked. It utilizes gravitational lensing—observing how dark matter's mass warps space and bends light from distant galaxies—to trace invisible structures with unprecedented precision.

Major Frameworks/Components:

  • Gravitational Lensing: The primary method used to detect non-luminous dark matter by measuring how it distorts background light.
  • Cosmic Evolution Survey (COSMOS): The specific region of the sky (in the constellation Sextans) observed for this study.
  • Mid-Infrared Instrument (MIRI): A key JWST instrument used to measure galactic distances and penetrate cosmic dust.
  • Matter Correlation: The study confirms a direct spatial overlap between "clumps" of dark matter and clusters of ordinary (baryonic) matter.

Branch of Science: Astrophysics, Cosmology.

Future Application: These detailed maps will help refine models of cosmic evolution, specifically clarifying how early dark matter structures accelerated the formation of the first stars and galaxies, thereby enabling the creation of planetary systems.

Why It Matters: It validates the theory that dark matter acts as the gravitational anchor for the visible universe. By proving that dark matter grew alongside ordinary matter, scientists can better understand the timeline of the universe's development, including the conditions that allowed for the emergence of planets like Earth.

Dense regions of dark matter are connected by lower-density filaments, forming a weblike structure known as the cosmic web. This pattern appears more clearly in the Webb data than in the earlier Hubble image. Ordinary matter, including galaxies, tends to trace this same underlying structure shaped by dark matter.
Image Credit: NASA/STScl/A- Pagan

With the Webb telescope’s unprecedented sensitivity, scientists are learning more about dark matter’s influence on stars, galaxies, and even planets like Earth. 

Scientists using data from NASA’s James Webb Space Telescope have made one of the most detailed, high-resolution maps of dark matter ever produced. It shows how the invisible, ghostly material overlaps and intertwines with “regular” matter, the stuff that makes up stars, galaxies, and everything we can see. 

Published January 26, in Nature Astronomy, the map builds on previous research to provide additional confirmation and new details about how dark matter has shaped the universe on the largest scales — galaxy clusters millions of light-years across — that ultimately give rise to galaxies, stars, and planets like Earth. 

“This is the largest dark matter map we’ve made with Webb, and it’s twice as sharp as any dark matter map made by other observatories,” said Diana Scognamiglio, lead author of the paper and an astrophysicist at NASA’s Jet Propulsion Laboratory in Southern California. “Previously, we were looking at a blurry picture of dark matter. Now we’re seeing the invisible scaffolding of the universe in stunning detail, thanks to Webb’s incredible resolution.” 

Some dark matter structures appear smaller in the Webb data because they are coming into sharper focus. Webb's higher resolution also makes it possible to better confine the size and location of the dark matter clusters in the lower left of the image.
Image Credit:NASA/STScl/A Pagan

Dark matter doesn’t emit, reflect, absorb, or even block light, and it passes through regular matter like a ghost. But it does interact with the universe through gravity, something the map shows with a new level of clarity. Evidence for this interaction lies in the degree of overlap between dark matter and regular matter. According to the paper’s authors, Webb’s observations confirm that this close alignment can’t be a coincidence but, rather, is due to dark matter’s gravity pulling regular matter toward it throughout cosmic history. 

“Wherever we see a big cluster of thousands of galaxies, we also see an equally massive amount of dark matter in the same place. And when we see a thin string of regular matter connecting two of those clusters, we see a string of dark matter as well,” said Richard Massey, an astrophysicist at Durham University in the United Kingdom and coauthor on the new study. “It’s not just that they have the same shapes. This map shows us that dark matter and regular matter have always been in the same place. They grew up together.” 

The researchers aimed to accurately measure the location of ordinary matter and compare it to the location of dark matter. Ghassem Gozaliasl, an astrophysics and AI researcher at Aalto University, worked with his team to detect galaxy groups and clusters and map X-ray emissions from their gas, heated to tens of millions of degrees — critical cosmic components for locating ordinary matter in the study. 

"Ordinary (baryonic) matter makes up only about 5% of the universe, while dark matter comprises roughly 27%, with dark energy accounting for the rest,” Gozaliasl explains. “Think of groups and clusters of galaxies as cosmic villages and cities, each embraced by invisible halos of dark matter. Our study revealed the precise masses and locations of both—the luminous structures we can see, and the invisible halos whose gravity surrounds, binds, and shapes them. 

Closer look 

Found in the constellation of Sextans, the area covered by the new map is a section of the sky about 2.5 times larger than the full Moon. A global community of scientists have observed this region with at least 15 ground- and space-based telescopes for the Cosmic Evolution Survey (COSMOS). Their goal: to precisely measure the location of regular matter here and then compare it to the location of dark matter. The first dark matter map of the area was made in 2007 using data from NASA’s Hubble Space Telescope, a project led by Massey and JPL astrophysicist Jason Rhodes, a coauthor on the paper. 

Webb peered at this region for a total of about 255 hours and identified nearly 800,000 galaxies, some of which were detected for the first time. Scognamiglio and her colleagues then looked for dark matter by observing how its mass curves space itself, which in turn bends the light traveling to Earth from distant galaxies. When researchers observe those galaxies, it’s as if their light has passed through a warped windowpane. 

The Webb map contains about 10 times more galaxies than maps of the area made by ground-based observatories and twice as many as Hubble’s. It reveals new clumps of dark matter and captures a higher-resolution view of the areas previously seen by Hubble. 

To refine measurements of the distance to many galaxies for the map, the team used Webb’s Mid-Infrared Instrument (MIRI), designed and managed through launch by JPL, along with other space- and ground-based telescopes. The wavelengths that MIRI detects also make it adept at detecting galaxies obscured by cosmic dust clouds. 

Shared history 

When the universe began, regular matter and dark matter were probably sparsely distributed. Scientists think dark matter began to clump together first, and that those dark matter clumps then pulled together regular matter, creating regions with enough material for stars and galaxies to begin to form. 

In this way, dark matter determined the large-scale distribution of galaxies in the universe. And by prompting galaxy and star formation to begin earlier than they would have otherwise, dark matter’s influence also played a role in creating the conditions for planets to eventually form. That’s because the first generations of stars were responsible for turning hydrogen and helium — which made up the vast majority of atoms in the early universe — into the rich array of elements that now compose planets like Earth. In other words, dark matter provided more time for complex planets to form. 

“When we look into deep space with Webb, we're looking back in time — light from those distant galaxies has been traveling toward us for billions of years. So, we get to see the universe when it was young, watch how dark matter shaped everything, how galaxies found their places in this cosmic dance. And when you think about it, our entire human story — everything we've ever done — is just one brief moment in this billions-of-years-old saga," says Gozaliasl. 

Reference material: What Is: Gravitational Microlensing

Published in journal: Nature Astronomy

TitleAn ultra-high-resolution map of (dark) matter

Authors: Diana Scognamiglio, Gavin Leroy, David Harvey, Richard Massey, Jason Rhodes, Hollis B. Akins, Malte Brinch, Edward Berman, Caitlin M. Casey, Nicole E. Drakos, Andreas L. Faisst, Maximilien Franco, Leo W. H. Fung, Ghassem Gozaliasl, Qiuhan He, Hossein Hatamnia, Eric Huff, Natalie B. Hogg, Olivier Ilbert, Jeyhan S. Kartaltepe, Anton M. Koekemoer, Shouwen Jin, Erini Lambrides, Alexie Leauthaud, Zane D. Lentz, Daizhong Liu, Guillaume Mahler, Claudia Maraston, Crystal L. Martin, Jacqueline McCleary, James Nightingale, Bahram Mobasher, Louise Paquereau, Sandrine Pires, Brant E. Robertson, David B. Sanders, Claudia Scarlata, Marko Shuntov, Greta Toni, Maximilian von Wietersheim-Kramsta, and John R. Weaver

Source/CreditAalto University

Reference Number: asph012626_01

Privacy Policy | Terms of Service | Contact Us

Featured Article

What Is: Supervolcanoes

Yellowstone Supervolcano undergoing a catastrophic super-eruption. Image Credit: Scientific Frontline / stock image Scientific Frontline: ...

Top Viewed Articles