. Scientific Frontline: Earth Science
Showing posts with label Earth Science. Show all posts
Showing posts with label Earth Science. Show all posts

Monday, October 13, 2025

Earth’s continents stabilized due to furnace-like heat

A new study of the chemical components of rocks led by researchers at Penn State and Columbia University provides the clearest evidence yet for how Earth's continents became and remained so stable — and the key ingredient is heat. 
Photo Credit: Jaydyn Isiminger / Penn State
(CC BY-NC-ND 4.0)

The new discovery has implications beyond geologic history, such as the search for critical minerals and habitable planets beyond Earth

For billions of years, Earth’s continents have remained remarkably stable, forming the foundation for mountains, ecosystems and civilizations. But the secret to their stability has mystified scientists for more than a century. Now, a new study by researchers at Penn State and Columbia University provides the clearest evidence yet for how the landforms became and remained so stable — and the key ingredient is heat. 

In a paper published today (Oct. 13) in the journal Nature Geoscience, the researchers demonstrated that the formation of stable continental crust — the kind that lasts billions of years — required temperatures exceeding 900 degrees Celsius in the planet’s lower continental crust. Such high temperatures, they said, were essential for redistributing radioactive elements like uranium and thorium. The elements generate heat as they decay, so as they moved from the bottom to the top of the crust, they carried heat out with them and allowed the deep crust to cool and strengthen.

Scientists uncover a new way to forecast eruptions at mid-ocean ridges through hydrothermal vent temperatures

Data loggers deployed at hydrothermal vents on the East Pacific Rise record temperature of vent fluids every ten minutes for up to a year.
Photo Credit: Photo courtesy of Jill McDermott, Lehigh Univ.; WHOI, NDSF, Alvin Team; Funder: National Science Foundation. © Woods Hole Oceanographic Institution

A new study provides scientists with a powerful new tool for monitoring and predicting tectonic activity deep beneath the seafloor at mid-ocean ridges—vast underwater mountain chains that form where Earth’s tectonic plates diverge.

The study, titled “Hydrothermal vent temperatures track magmatic inflation and forecast eruptions at the East Pacific Rise, 9°50'N,” reveals that fluctuations in the temperature of fluids flowing from hydrothermal vents occurring over minutes to years indicate the effects of magmatic and tectonic processes that occur miles beneath the seafloor. The research offers the first evidence that these subtle but detectable temperature changes could offer the means to predict seafloor volcanic eruptions.

Led by Thibaut Barreyre of the French National Centre for Scientific Research (CNRS) and University of Brest, with collaborators from Woods Hole Oceanographic Institution (WHOI), Lehigh University, and Scripps Institution of Oceanography, the study presents a 35-year time-series of temperature measurements from five hydrothermal vents along the East Pacific Rise, one of the most active segments and well-studied of the global mid-ocean ridge system.

Understanding volcanoes better

Oldoinyo Lengai in Tanzania is the only active carbonatite volcano on Earth.
Photo Credit: © Miriam Reiss

How do volcanoes work? What happens beneath their surface? What causes the vibrations – known as tremor – that occur when magma or gases move upward through a volcano's conduits? Professor Dr. Miriam Christina Reiss, a volcano seismologist at Johannes Gutenberg University Mainz (JGU), and her team have located such tremor signals at the Oldoinyo Lengai volcano in Tanzania. "We were not only able to detect tremor, but also to determine its exact position in three dimensions – its location and depth below the surface," said Reiss. "What was particularly striking was the diversity of different tremor signals we detected." The findings provide new insights into how magma and gas are transported within the Earth and thus improve our understanding of volcanic dynamics. This also has societal relevance as the researchers hope that their work will enhance the ability to forecast volcanic eruptions in the long term. Their results have recently been published in Communications Earth & Environment.

The Red Sea Went Completely Dry Before Being Flooded by the Indian Ocean

 KAUST scientists have determined a rapid flood more than 6 million years ago radically changed the Red Sea and all its marine life.
Photo Credit: Francesco Ungaro

KAUST researchers find the Red Sea experienced a massive disruption 6.2 million years ago completely changing its marine life 

Scientists at King Abdullah University of Science and Technology (KAUST) have provided conclusive evidence that the Red Sea completely dried out about 6.2 million years ago, before being suddenly refilled by a catastrophic flood from the Indian Ocean. The findings, published in Communications Earth & Environment, put a definitive time on a dramatic event that changed the Red Sea. 

Using seismic imaging, microfossil evidence, and geochemical dating techniques, the KAUST researchers showed that a massive change happened in about 100 000 years – a blink of an eye for a major geological event. The Red Sea went from connecting with the Mediterranean Sea to an empty, salt-filled basin. Then, a massive flood burst through volcanic barriers to open the Bab el-Mandab strait and reconnect the Red Sea with the world’s oceans. 

“Our findings show that the Red Sea basin records one of the most extreme environmental events on Earth, when it dried out completely and was then suddenly reflooded about 6.2 million years ago,” said lead author Dr. Tihana Pensa of KAUST. “The flood transformed the basin, restored marine conditions, and established the Red Sea’s lasting connection to the Indian Ocean.” 

Saturday, October 11, 2025

What Is: El Niño, La Niña, and a Climate in Flux

Image Credit: Scientific Frontline / NOAA

The Planet's Most Powerful Climate Cycle

In 1997, a climatic event of unprecedented scale began to unfold in the tropical Pacific Ocean. Dubbed the "El Niño of the century," it triggered a cascade of extreme weather that reshaped global patterns for over a year. It unleashed devastating floods and droughts, sparked massive forest fires, decimated marine ecosystems, and crippled national economies. By the time it subsided in 1998, the event was estimated to have caused more than 22,000 deaths and inflicted over $36 billion in damages worldwide. Nearly two decades later, the powerful 2015-16 El Niño, supercharged by a background of long-term global warming, helped propel 2016 to become the hottest year on record and directly impacted the lives and livelihoods of over 60 million people.

These catastrophic events are not random acts of nature but manifestations of the planet's most powerful and influential climate cycle: the El Niño-Southern Oscillation (ENSO). This naturally occurring phenomenon is a periodic, irregular fluctuation of sea surface temperatures and atmospheric pressure across the vast expanse of the equatorial Pacific Ocean. At its heart are two opposing phases: El Niño ("The Little Boy" in Spanish), a significant warming of the ocean surface, and La Niña ("The Little Girl"), a countervailing cooling. Together with a neutral "in-between" state, they form a planetary-scale pendulum that swings irregularly every two to seven years, dictating patterns of drought and flood, storm and calm, across the globe.

Wednesday, October 8, 2025

Heatwaves at Sea May Force the Ocean to Release More CO2

Marine heatwaves are disrupting the ocean’s ability to store carbon
Image Credit: Scientific Frontline / AI generated

Heatwaves not only occur on land – they also occur in the oceans, causing ocean temperatures to stay warmer than normal for longer periods. Marine heatwaves can cover huge areas of the sea and have major effects on marine life, from plankton to reefs and whales.

Now, a new study shows that marine heatwaves may also affect how carbon is stored in the ocean.

The ocean is one of Earths biggest carbon sinks. It soaks up vast amounts of CO2 from the atmosphere, and in the surface water, algae and other photosynthetic microorganisms capture it and convert it to organic carbon. When these organisms die and sink to the bottom, the carbon sinks with them. In the deep ocean, the removed carbon can be locked away for hundreds, even thousands of years.

Tuesday, October 7, 2025

Volcanic ash may enhance phytoplankton growth in the ocean over 100 km away

Nishinoshima Island, located in the Ogasawara Islands of Japan, is home to an active volcano. Ash from volcanic eruptions there in 2020 could have led to a temporary surge in phytoplankton levels in the seawater 130 km away.
Photo Credit: Ogasawara Village Tourism Bureau

A research group in Japan has suggested that ash released from volcanic eruptions on Nishinoshima Island—part of Japan's Ogasawara Islands—led to a temporary surge in phytoplankton levels in the seawater around Mukojima Island, which is located 130 km northeast of Nishinoshima and is also part of the Ogasawara Islands.

Mukojima lies within the subtropical gyre, a region known for low nutrient and low chlorophyll conditions. The study indicates that ash from the Nishinoshima eruptions was transported by wind and ocean currents to the waters around Mukojima, serving as a nutrient source for phytoplankton growth in that area.

Cascadia and San Andreas faults may be seismically linked

Chris Goldfinger
Photo Credit: Courtesy of Oregon State University

Two fault systems on North America’s West Coast – the Cascadia subduction zone and the San Andreas fault – may be synchronized, with earthquakes on one fault potentially triggering seismic events on the other, a new study.

“We’re used to hearing the ‘Big One’ – Cascadia – being this catastrophic huge thing,” said Chris Goldfinger Link is external, a marine geologist at Oregon State University and lead author of the study. “It turns out it’s not the worst-case scenario.”

Goldfinger and a team of researchers drilled deep-sea sediment cores representing 3,100 years of geologic history, and analyzed layers known as turbidites that are deposited by underwater landslides often triggered by earthquakes. They compared turbidite layers in cores from both fault systems and found similarities in timing and structure, suggesting the seismic synchronization between the faults.

In most cases, it’s difficult to determine the time separation between the Cascadia subduction zone and northern San Andreas fault ruptures, but Goldfinger said there are three instances in the past 1,500 years, including a most recent one from 1700, when the researchers believe the ruptures were just minutes to hours apart.

Sunday, October 5, 2025

Rare glimpse at understudied ecosystem prompts caution on deep-sea mining

Some of the animals identified in the deep-sea that spend their life in the benthic boundary layer.
Photo Credit: Gabrielle Ellis

An enormous but poorly understood region of the global ocean–referred to as the abyssal benthic boundary layer–lies a few meters above the seafloor and has only been sampled a handful of times. A study by oceanographers at the University of Hawaiʻi at Mānoa provided the first in-depth look at this habitat, revealing a dynamic community that may be more sensitive to seasonal changes than previously understood. The research, published in Limnology and Oceanography, also concluded that deep-sea mining could have significant and unavoidable impacts on biodiversity, regardless of the time of year.

“Given the remoteness of this environment, we have extraordinarily limited knowledge of the animals that inhabit this zone,” said Gabrielle Ellis, lead author of the study and recent oceanography graduate from the UH Mānoa School of Ocean and Earth Science and Technology. “This study represents a significant contribution to our understanding of the benthic boundary layer community, and it starts to unravel temporal dynamics in the abyss.”

Monday, September 29, 2025

The first animals on Earth may have been sea sponges, study suggests

Some of the first animals on Earth were likely ancestors of the modern sea sponge, according to MIT geochemists who unearthed new evidence in very old rocks.
Image Image: Jose-Luis Olivares, MIT
(CC BY-NC-ND 4.0)

A team of MIT geochemists has unearthed new evidence in very old rocks suggesting that some of the first animals on Earth were likely ancestors of the modern sea sponge.

In a study appearing today in the Proceedings of the National Academy of Sciences, the researchers report that they have identified “chemical fossils” that may have been left by ancient sponges in rocks that are more than 541 million years old. A chemical fossil is a remnant of a biomolecule that originated from a living organism that has since been buried, transformed, and preserved in sediment, sometimes for hundreds of millions of years.

The newly identified chemical fossils are special types of steranes, which are the geologically stable form of sterols, such as cholesterol, that are found in the cell membranes of complex organisms. The researchers traced these special steranes to a class of sea sponges known as demosponges. Today, demosponges come in a huge variety of sizes and colors, and live throughout the oceans as soft and squishy filter feeders. Their ancient counterparts may have shared similar characteristics.

Wednesday, September 24, 2025

Supercritical subsurface fluids open a window into the world

Interpreted 3D seismic characteristics.
The seal layer, interpreted by looking at data on the supercritical fluid’s movement, appears as a distinct region. It’s disrupted where it meets a fault which makes it appear porous to the fluid, allowing it to migrate upwards, causing seismic vibrations.
Image Credit: ©2025 Tsuji et al.
(CC BY 4.0)

Researchers including those from the University of Tokyo build on past studies and introduce new methods to explore the nature and role of subsurface fluids including water in the instances and behaviors of earthquakes and volcanoes. Their study suggests that water, even heavy rainfall, can play a role in or even trigger seismic events. This could potentially lead to better early warning systems. The study improves models of seismic activity and can even help identify optimal sites for drilling to tap sources of supercritical geothermal energy.

As far as is currently known, earthquakes and volcanic eruptions cannot be predicted, certainly not on the timescales with which we expect from typical weather reports. But as physical theories improve, so does the accuracy of statistical models which could be useful for planning, and potentially also early warning systems, which can save lives when disaster does strike. Another benefit of improving such models is that they could help locate areas suitable for tapping into geothermal energy. So, it’s the improvement of theories, based on good observations, that geologists and other researchers strive for. And a recent development in this field has added another factor into the mix which may be more significant than was previously thought.

Monday, September 22, 2025

Rivers in the Sky, Arctic Warming, and What this Means for the Greenland Ice Sheet

Photo Credit: Beau Mori

 “Atmospheric rivers” are large-scale extreme weather systems that are making headlines more frequently. When viewed in satellite images, they appear just as described – like rivers in the sky. Though they are often reported in places like California, these weather systems have the potential to bring high heat and dump disastrous amounts of precipitation on areas throughout the mid and high latitudes.

A team of researchers, including UConn Department of Earth Sciences associate professor Clay Tabor and Ph.D. student Joseph Schnaubelt, looked at how atmospheric rivers impacted the Greenland Ice Sheet in the past to get a better understanding of how these weather systems may enhance melting in the Arctic as the climate continues to warm. Their results are published in AGU Advances.

An important question that paleoclimate scientists like Schnaubelt and Tabor are trying to answer is how the Arctic will respond to climate change, and for this they focused deep into the past on a time called the Last Interglacial, between 130,000 and 115,000 years ago.

“Earth goes through glacial cycles, and the Last Interglacial was the last time the Arctic was warmer than present day,” says Schnaubelt. “We know that that’s the direction we’re headed toward, and we wanted to see how atmospheric rivers impacted the Greenland Ice Sheet.”

Ice dissolves iron faster than liquid water

When ice freezes and thaws repeatedly, chemical reactions are fuelled that can have significant impact on ecosystems. The photo was taken in Stordalen, Abisko.
Photo Credit: Jean-François Boily

Ice can dissolve iron minerals more effectively than liquid water, according to a new study from Umeå University. The discovery could help explain why many Arctic rivers are now turning rusty orange as permafrost thaws in a warming climate.

The study, recently published in the scientific journal PNAS, shows that ice at minus ten degrees Celsius releases more iron from common minerals than liquid water at four degrees Celsius. This challenges the long-held belief that frozen environments slow down chemical reactions.

“It may sound counterintuitive, but ice is not a passive frozen block,” says Jean-François Boily, Professor at Umeå University and co-author of the study. “Freezing creates microscopic pockets of liquid water between ice crystals. These act like chemical reactors, where compounds become concentrated and extremely acidic. This means they can react with iron minerals even at temperatures as low as minus 30 degrees Celsius.”

Friday, September 19, 2025

Fossilized feces help bring prehistoric worlds to life — in molecular detail

Image Credit: Courtesy of Curtin University

An international research team led by Curtin University has used prehistoric feces to better understand how molecular fossilization works, offering a new window into what ancient animals ate, the world they lived in and what happened after they died.

Published in the journal Geobiology and funded by the ARC Laureate Fellowship program, the study examined 300-million-year-old fossilized droppings, or ‘coprolites’, mostly from the Mazon Creek fossil site in the United States.

The coprolites were already known to contain cholesterol derivatives, which is strong evidence of a meat-based diet, but the new research explored how those delicate molecular traces were preserved and survived the ravages of time.

Usually, soft tissues are fossilized due to phosphate minerals, but the study found molecules were preserved thanks to tiny grains of iron carbonate scattered throughout the fossil, acting like microscopic time capsules.

Thursday, September 18, 2025

Cosmic glass found only in Australia reveals ancient asteroid impact

The newly discovered tektites or ‘cosmic glass’.
Photo Credit: Et al. ‘Earth and Planetary Science Letters’

Curtin researchers have helped uncover evidence of a mysterious giant asteroid impact, hidden not in a crater but in tiny pieces of glass found only in Australia.

The discovery centers on rare tektites, which are natural glasses created when a space rock slams into Earth, melting surface material and hurling it hundreds or even thousands of kilometers. The newly discovered type of tektites has so far been found exclusively in an area mainly within South Australia.

Co-author Professor Fred Jourdan, from Curtin’s School of Earth and Planetary Sciences, said finding a new tektite field is like opening a fresh chapter in Earth’s violent geological past.

“These glasses are unique to Australia and have recorded an ancient impact event we did not even know about,” Professor Jourdan said.

Monday, February 10, 2025

Anomaly in the Deep Sea: Extraordinary Accumulation of Rare Atoms Could Improve Geological Dating Methods

Schematic depiction of production and incorporation of cosmogenic 10Be into ferromanganese crusts. A pronounced anomaly in 10Be concentration about 10 million years ago was discovered. This anomaly has great potential as time marker for the Late Miocene.
Image Credit: © HZDR / blrck.de

Beryllium-10, a rare radioactive isotope produced by cosmic rays in the atmosphere, provides valuable insights into the Earth's geological history. A research team from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in collaboration with the TUD Dresden University of Technology and the Australian National University (ANU), has discovered an unexpected accumulation of this isotope in samples taken from the Pacific seabed. Such an anomaly may be attributed to shifts in ocean currents or astrophysical events that occurred approximately 10 million years ago. The findings hold the potential to serve as a global time marker, representing a promising advancement in the dating of geological archives spanning millions of years. The team presents its results in the scientific journal Nature Communications.

Radionuclides are types of atomic nuclei (isotopes) that decay into other elements over time. They are used to date archaeological and geological samples, with radiocarbon dating being one of the most well-known methods. In principle, radiocarbon dating is based on the fact that living organisms continuously absorb the radioactive isotope carbon-14 (14C) during their lifetime. Once an organism dies, the absorption ceases, and the 14C content starts to decrease through radioactive decay with a half-life of approximately 5,700 years. By comparing the ratio of unstable 14C to stable carbon-12 (12C), researchers can determine the date of the organism's death.

Tuesday, February 4, 2025

Cracks in Greenland Ice Sheet are growing, study finds

Crevasses at Store Glacier, a marine-terminating outlet glacier of the western Greenland Ice Sheet.
 Photo Credit: Tom Chudley (Durham University)

A new study published this week in Nature Geoscience reveals that in response to climate change, the Greenland Ice Sheet is developing significantly more surface crevasses in key regions – a change that may accelerate ice loss and contribute to rising sea levels.

The research was led by Thomas Chudley, a research assistant professor at Durham University and former research associate at The Ohio State University’s Byrd Polar and Climate Research Center. The study analyzed high-resolution 3D surface maps and found that crevasses – wedge-shaped fractures in ice – had significantly increased in size and depth at the ice sheet’s fast-flowing edges over the entire Greenland Ice Sheet between 2016 and 2021.

Scientists Discovered the Oldest Junipers in the Arctic

Dendrochronologists determined the age of the trees by cross-dating. The photo shows a sample of juniper.
Photo Credit: Rashit Khantemirov

A group of dendrochronologists from Italy, Denmark, Germany and Russia has discovered the longest-lived woody plant in the Arctic. It was the common juniper (Juniperus communis). The oldest juniper bush, which was found in the north of Finland, is 1647 years old. In the Polar Urals, the oldest juniper bush lived half as long, yet it is the longest-living organism in the Urals. Scientists told about the long-lived junipers in an article in the journal Ecology.

"Many species in the genus Juniperus are long-lived woody plants. But there was a lack of reliable data on the most common species, the common juniper. There are legends about junipers that are two thousand years old, but there was no reliable evidence. Counting the number of annual rings, rather than estimating the age by trunk thickness, shrub size and other indirect signs, can be considered reliable evidence," explains Rashit Khantemirov, co-author of the paper, a member of the Laboratory of Natural Science Methods in Humanities at Ural Federal University and the Laboratory of Dendrochronology and IER&J of the Ural Branch of the Russian Academy of Sciences.

Monday, February 3, 2025

Plant Power: A New Method to Model How Plants Move Water Globally

Golden hour looking out on the UConn Forest.
Photo Credit: Sean Flynn/UConn Photo

Earth systems models are an important tool for studying complex processes occurring around the planet, such as those in and between the atmosphere and biosphere, and they help researchers and policymakers better understand phenomena like climate change. Incorporating more data into these simulations can improve modeling accuracy; however, sometimes, this requires the arduous task of gathering millions of data points.

Researchers, including UConn Department of Natural Resources and the Environment Assistant Professor James Knighton, Pablo Sanchez-Martinez from the University of Edinburgh, and Leander Anderegg from the University of California Santa Barbara, have developed a method to bypass the need for gathering data for over 55,000 tree species to better account for how plants influence the flow of water around the planet. Their findings are published in Nature Scientific Data.

Plants play essential roles in Earth’s processes, from capturing carbon and making oxygen available for other life forms like humans. Plants are also responsible for the movement of water, says Knighton, where an estimated 60% of all rain is returned to the atmosphere through transpiration. This huge global-scale movement of water through plants is complex and currently represented by Earth system models (ESMs) in a simplified way says Knighton, where all plants in a region may be considered as a single entity (i.e., a plant functional type),

Temperature, rainfall and tides speed glacier flow on a daily basis

The calving front of the Bowdoin Glacier/Kangerluarsuup Sermia.
Photo Credit: Shin Sugiyama

Even though ‘glacial’ is commonly used to describe extremely slow, steady movement, a new study has found that glaciers speed up and slow down on a daily – even hourly – basis in response to changes in air temperature, rainfall and the tides.

A research team including scientists from Japan’s Hokkaido University studied the movement of a glacier in Greenland over six summers and mapped those movements against local weather patterns and tides to explore how these affect the glacier’s flow. The results have been published in the journal The Cryosphere.

“Short-term speed variations are key to understanding the physical processes controlling glacial motion, but studies are sparse for Greenlandic tidewater glaciers, particularly near the calving front,” says Hokkaido University’s Shin Sugiyama, lead author of the study. “Studying glacier dynamics near the ocean boundary is crucial to understanding the current and future mass loss of the ice sheet.”

Featured Article

Climate change may increase the spread of neurotoxin in the oceans

The researchers’ findings raise concerns about how climate change may affect the levels of methylmercury in fish and shellfish. Photo Credit...

Top Viewed Articles