Bristol-led team uses nanomaterials made from seaweed to create a strong battery separator, paving the way for greener and more efficient energy storage.
Sodium-metal batteries (SMBs) are one of the most promising high-energy and low-cost energy storage systems for the next-generation of large-scale applications. However, one of the major impediments to the development of SMBs is uncontrolled dendrite growth, which penetrates the battery’s separator and results in short-circuiting.
Building on previous work at the University of Bristol and in collaboration with Imperial College and University College London, the team has succeeded in making a separator from cellulose nanomaterials derived from brown seaweed.
The research, published in Advanced Materials, describes how fibers containing these seaweed-derived nanomaterials not only stop crystals from the sodium electrodes penetrating the separator, they also improve the performance of the batteries.