![]() |
| Illustration Credit: Fusion Medical Animation |
Coronavirus disease (COVID-19) hijacks parts of infected cells' vital RNA machinery, thereby blocking important functions in the cells. These damaging changes in the RNA can likely be reversed, potentially leading to new drugs against COVID-19, University of Gothenburg researchers show.
Genetic material in the body's cells consists of DNA, which serves as long-term storage of genetic information. RNA carries this encoded information to the cells for transcription and translation. These processes enable them to make proteins, which perform most intracellular tasks. The cells' RNA is modifiable to allow correct transfer of the DNA information to the proteins. In recent years, scientific understanding of the complexity and importance of these RNA modifications has grown.
Drastic impact
It has been shown that RNA modifications take place in various viruses, but exactly how the viruses affect the RNA modification processes when they infect cells is unknown. This study reports that SARS-CoV-2 infection disrupts the RNA modifications, and the extent of these RNA modification changes surprised the researchers.
One of the modifications affected by SARS-CoV-2, known as m6A (a multifaceted regulator of gene expression), is highly important for RNA’s basic functions, including transportation of data to the protein-making parts of the cell, and transcription and translation into amino acids there.
“We were surprised at the extent and drastic scale of m6A RNA modification loss in SARS-CoV-2 infection. We also found that the coronavirus variants have differing effects on m6A levels,” says Tanmoy Mondal, researcher at Sahlgrenska Academy, University of Gothenburg, who led the project.


.jpg)



.jpg)


.jpg)