The SLAC-Stanford team pulled hydrogen directly from ocean waters. Their work could help efforts to generate low-carbon fuel for electric grids, cars, boats and other infrastructure.
Seawater’s mix of hydrogen, oxygen, sodium and other elements makes it vital to life on Earth. But that same complex chemistry has made it difficult to extract hydrogen gas for clean energy uses.
Now, researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University with collaborators at the University of Oregon and Manchester Metropolitan University have found a way to tease hydrogen out of the ocean by funneling seawater through a double-membrane system and electricity. Their innovative design proved successful in generating hydrogen gas without producing large amounts of harmful byproducts. The results of their study, published in Joule, could help advance efforts to produce low-carbon fuels.
“Many water-to-hydrogen systems today try to use a monolayer or single-layer membrane. Our study brought two layers together,” said Adam Nielander, an associate staff scientist with the SUNCAT Center for Interface Science and Catalysis, a SLAC-Stanford joint institute. “These membrane architectures allowed us to control the way ions in seawater moved in our experiment.”

.jpg)


.jpg)



.jpg)
.jpg)