. Scientific Frontline

Monday, October 30, 2023

Using lasers to ‘heat and beat’ 3D-printed steel could help reduce costs

Retrieval of a stainless steel part made by 3D printing 
Photo Credit: Jude E. Fronda

The method, developed by a research team led by the University of Cambridge, allows structural modifications to be ‘programmed’ into metal alloys during 3D printing, fine-tuning their properties without the ‘heating and beating’ process that’s been in use for thousands of years.

The new 3D printing method combines the best qualities of both worlds: the complex shapes that 3D printing makes possible, and the ability to engineer the structure and properties of metals that traditional methods allow. The results are reported in the journal Nature Communications.

3D printing has several advantages over other manufacturing methods. For example, it’s far easier to produce intricate shapes using 3D printing, and it uses far less material than traditional metal manufacturing methods, making it a more efficient process. However, it also has significant drawbacks.

“There’s a lot of promise around 3D printing, but it’s still not in wide use in industry, mostly because of high production costs,” said Dr Matteo Seita from Cambridge’s Department of Engineering, who led the research. “One of the main drivers of these costs is the amount of tweaking that materials need after production.”

The brain may learn about the world the same way some computational models do

Two new MIT studies offer evidence supporting the idea that the brain uses a process similar to a machine-learning approach known as “self-supervised learning.”
Illustration Credit: geralt

To make our way through the world, our brain must develop an intuitive understanding of the physical world around us, which we then use to interpret sensory information coming into the brain.

How does the brain develop that intuitive understanding? Many scientists believe that it may use a process similar to what’s known as “self-supervised learning.” This type of machine learning, originally developed as a way to create more efficient models for computer vision, allows computational models to learn about visual scenes based solely on the similarities and differences between them, with no labels or other information.

A pair of studies from researchers at the K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center at MIT offers new evidence supporting this hypothesis. The researchers found that when they trained models known as neural networks using a particular type of self-supervised learning, the resulting models generated activity patterns very similar to those seen in the brains of animals that were performing the same tasks as the models.

The findings suggest that these models are able to learn representations of the physical world that they can use to make accurate predictions about what will happen in that world, and that the mammalian brain may be using the same strategy, the researchers say.

Two bee species become one as researchers solve identity puzzle

The male Xanthesma (Xenohesma) brachycera.
Photo Credit: Courtesy of Curtin University

A new study by Curtin and Flinders Universities has found that what were thought to be two different species of native Australian bee are in fact one.

Lead researcher Dr Kit Prendergast from the Curtin School of Molecular and Life Sciences said the study, based on native bee surveys at Perth locations of Wireless Hill, Shenton Park and Russo Reserve, fundamentally alters previous thinking.

“Essentially the research team used DNA sequencing to show that what we used to think of as two different species of bees are actually just the males and females of one, single species,” Dr Prendergast said.

“For many native bee species in Australia, their descriptions were based on only one sex. Identifying males and females as belonging to the same species solely through observation can be challenging, as both sexes of the same species often display noticeable differences.

Saturday, October 28, 2023

Native waterfall-climbing fish threatened by climate change, human activity

ʻOʻopu nākea is a type of goby fish found only in Hawaiʻi.
Photo Credit: Courtesy of University of Hawaiʻi

New research out of the University of Hawaiʻi at Mānoa is highlighting the importance of the ma uka (mountain) to ma kai (ocean) approach to the stewardship of Hawaiʻi’s natural and cultural resources.

The research focused on ʻoʻopu nākea, a type of goby fish found only in Hawaiʻi. ʻOʻopu nākea spends the larval part of its life in the ocean before returning to the freshwater streams to complete adulthood. It is also one of five freshwater fishes endemic to Hawaiʻi with fused pelvic fins that act as a suction cup to help climb waterfalls as they migrate upstream.

Unfortunately, like so many endemic species to Hawaiʻi, ʻoʻopu nākea are under threat from climate change and human activity and previous research indicated the species no longer needed to reach the ocean to complete their life cycle.

The UH Mānoa-led team utilized the latest microchemistry methods and found that 100% of ʻoʻopu nākea are still using the ocean as an important part of larval development. The study, “Understanding Amphidromy in Hawaiʻi: ʻOʻopu nākea (Awaous stamineus),” was published in the Journal of Fish Biology, and although the findings were positive, they still highlight the importance of preserving Hawaiʻi’s freshwater streams and bodies of water.

Mechanics of breast cancer metastasis discovered, offering target for treatment

A human breast cancer cell, adenocarcinoma MDA-MB-231, demonstrates metastatic-like adhesion, spreading and migrating in a collagen matrix designed to mimic soft tissue. New research led by Penn State reveals for the first time the mechanics behind how breast cancer cells may invade healthy tissues. The discovery, showing that a motor protein called dynein powers the movement of cancer cells in soft tissue models, offers new clinical targets against metastasis and has the potential to fundamentally change how cancer is treated. 
Image Credit: Erdem Tabdanov / Pennsylvania State University
(CC BY-NC-ND 4.0 DEED)

The most lethal feature of any cancer is metastasis, the spread of cancer cells throughout the body. New research led by Penn State reveals for the first time the mechanics behind how breast cancer cells may invade healthy tissues. The discovery, showing that a motor protein called dynein powers the movement of cancer cells in soft tissue models, offers new clinical targets against metastasis and has the potential to fundamentally change how cancer is treated.

“This discovery marks a paradigm shift in many ways,” said Erdem Tabdanov, assistant professor of pharmacology at Penn State and a lead co-corresponding author on the study, recently published in the journal Advanced Science. “Until now, dynein has never been caught in the business of providing the mechanical force for cancer cell motility, which is their ability to move themselves. Now we can see that if you target dynein, you could effectively stop motility of those cells and, therefore, stop metastatic dissemination.”

The project began as a collaboration between Penn State’s Department of Chemical Engineering and Penn State’s College of Medicine, before growing into a multi-institution partnership with researchers at the University of Rochester Medical Center, Georgia Institute of Technology, Emory University, and the U.S. Food and Drug Administration.

Spinaron: A Rugby in a Ball Pit. New Quantum Effect Demonstrated for the First Time

The cobalt atom (red) has a magnetic moment (“spin,” blue arrow ), which is constantly reoriented (from spin-up to spin-down) by an external magnetic field. As a result, the magnetic atom excites the electrons of the copper surface (gray), causing them to oscillate (creating ripples). This revelation by the Würzburg-Dresden Cluster of Excellence ct.qmat was made possible thanks to the physicists’ inclusion of an iron tip (yellow) on their scanning tunneling microscope.
Illustration Credit: © Juba Bouaziz/Ulrich Puhlfürst

For the first time, experimental physicists from the Würzburg-Dresden Cluster of Excellence ct.qmat have demonstrated a new quantum effect aptly named the “spinaron.” In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect – a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s. These groundbreaking findings were published today in the esteemed journal Nature Physics.

Ultra-Cold & Ultra-Strong: Pushing Boundaries in the Lab

Extreme conditions prevail in the Würzburg laboratory of experimental physicists Professor Matthias Bode and Dr. Artem Odobesko. Affiliated with the Cluster of Excellence ct.qmat, a collaboration between JMU Würzburg and TU Dresden, these visionaries are setting new milestones in quantum research. Their latest endeavor is unveiling the spinaron effect. They strategically placed individual cobalt atoms onto a copper surface, brought the temperature down to 1.4 Kelvin (–271.75° Celsius), and then subjected them to a powerful external magnetic field. “The magnet we use costs half a million euros. It’s not something that’s widely available,” explains Bode. Their subsequent analysis yielded unexpected revelations.

Binghamton computer scientists program robotic seeing-eye dog to guide the visually impaired

Associate Professor of Computer Science Shiqi Zhang and his students have programmed a robot guide dog to assist the visually impaired. The robot responds to tugs on its leash.
Photo Credit: Stephen Folkerts

Last year, the Computer Science Department at the Thomas J. Watson College of Engineering and Applied Science went trick-or-treating with a quadruped robotic dog. This year, they are using the robot for something that Assistant Professor Shiqi Zhang calls “much more important” than handing out candy, as fun as that can be.

Zhang and PhD students David DeFazio and Eisuke Hirota have been working on a robotic seeing-eye dog to increase accessibility for visually impaired people. They presented a demonstration in which the robot dog led a person around a lab hallway, confidently and carefully responding to directive input.

Zhang explained some of the reasons behind starting the project.

“We were surprised that throughout the visually impaired and blind communities, so few of them are able to use a real seeing-eye dog for their whole life. We checked the statistics, and only 2% of them are able to do that,” he said.

Meltwater Flowing Beneath Antarctic Glaciers May Be Accelerating Their Retreat

An aerial view of the Denman Glacier ice tongue in East Antarctica.
Photo Credit: Jamin S. Greenbaum

A new Antarctic ice sheet modeling study from scientists at UC San Diego’s Scripps Institution of Oceanography suggests that meltwater flowing out to sea from beneath Antarctic glaciers is making them lose ice faster. 

The model’s simulations suggest this effect is large enough to make a meaningful contribution to global sea-level rise under high greenhouse gas emissions scenarios. 

The extra ice loss caused by this meltwater flowing out to sea from beneath Antarctic glaciers is not currently accounted for in the models generating major sea-level rise projections, such as those of the Intergovernmental Panel on Climate Change (IPCC). If this process turns out to be an important driver of ice loss across the entire Antarctic ice sheet, it could mean current projections underestimate the pace of global sea-level rise in decades to come.

“Knowing when and how much global sea-level will rise is critical to the welfare of coastal communities,” said Tyler Pelle, the study’s lead author and a postdoctoral researcher at Scripps. “Millions of people live in low-lying coastal zones and we can’t adequately prepare our communities without accurate sea-level rise projections.”

Friday, October 27, 2023

Sheffield astronomers help to confirm heaviest elements in the Universe are formed in kilonovae

The Gamma-Ray Burst (GRB) 230307A and its associated kilonova explosion.
Image Credit: NASA, ESA, CSA, STScI, A. Levan (Radboud University and University of Warwick)

Astrophysicists are one step closer to understanding how the heaviest chemical elements are created in the universe, thanks to a camera designed and built at the University of Sheffield.

Scientists from the Astrophysics Group at the University of Sheffield observed the merger of two dense neutron stars, known as a kilonova, in a spiral galaxy a billion light years away

The discovery of the kilonova, only the second one to be observed, was made possible thanks to observations with the University of Sheffield’s camera ULTRACAM mounted on the New Technology Telescope at the European Southern Observatory in Chile

Kilonovae are important because their explosions are believed to form the heaviest elements in the periodic table, including most of the gold, platinum and uranium found on Earth

Astrophysicists are one step closer to understanding how the heaviest chemical elements are created in the universe, thanks to a camera designed and built at the University of Sheffield.

Senescent Cells Key to Axolotl Limb Regeneration

Axolotl – the Mexican salamander with unique regenerative abilities helps scientists uncover the molecular mechanisms of regeneration.
Photo Credit: © TUD/CRTD

Senescent cells have been implicated in a variety of processes typically connected with deterioration and aging. Recent studies suggest that the short-term presence of senescent cells can actually be beneficial. A new comprehensive study by the Yun group shows that cellular senescence plays a critical role during axolotl limb regeneration. Senescent cells in the regenerating structure use the Wnt pathway to signal to surrounding cells and create a microenvironment that favors regeneration and growth. The results were published in the journal Developmental Cell.

Senescent cells, often referred to as “zombie cells”, are no longer dividing but also not dying. Their buildup is considered one of the hallmarks of aging however recent studies suggest that they also play a role in positive processes such as wound healing and tumor suppression.

‘‘Our understanding of the role that senescent cells play in regenerative processes is very limited. Since most of the current knowledge relies on in-vitro studies, it was clear to us that to get new insights we need to find a way to study senescent cells in-vivo, i.e., analyze them within the animal during the process of regeneration,” says Dr. Maximina Yun, research group leader at the Center for Regenerative Therapies Dresden (CRTD) and the Cluster of Excellence Physics of Life at TUD Dresden University of Technology as well as the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden.

Featured Article

What Is: Supervolcanoes

Yellowstone Supervolcano undergoing a catastrophic super-eruption. Image Credit: Scientific Frontline / stock image Scientific Frontline: ...

Top Viewed Articles