. Scientific Frontline: Chemistry
Showing posts with label Chemistry. Show all posts
Showing posts with label Chemistry. Show all posts

Tuesday, December 19, 2023

Researchers Find They Can Stop Degradation of Promising Solar Cell Materials

An illustration of metal halide perovskites. They are a promising material for turning light into energy because they are highly efficient, but they also are unstable. Georgia Tech engineers showed in a new study that both water and oxygen are required for perovskites to degrade. The team stopped the transformation with a thin layer of another molecule that repelled water.
Image Credit: Courtesy of Juan-Pablo Correa-Baena

Georgia Tech materials engineers have unraveled the mechanism that causes degradation of a promising new material for solar cells — and they’ve been able to stop it using a thin layer of molecules that repels water.

Their findings are the first step in solving one of the key limitations of metal halide perovskites, which are already as efficient as the best silicon-based solar cells at capturing light and converting it into electricity. They reported their work in the Journal of the American Chemical Society.

“Perovskites have the potential of not only transforming how we produce solar energy, but also how we make semiconductors for other types of applications like LEDs or phototransistors. We can think about them for applications in quantum information technology, such as light emission for quantum communication,” said Juan-Pablo Correa-Baena, assistant professor in the School of Materials Science and Engineering and the study’s senior author. “These materials have impressive properties that are very promising.”

Monday, December 18, 2023

Researchers invent "Methane Cleaner": could become a permanent fixture in cattle and pig barns

A look inside the MEPS reactor (Methane Eradication Photochemical System), where chlorine atoms are formed by UV light and react with methane gas.
Photo Credit: Morten Krogsbøll.

In a spectacular new study, researchers from the University of Copenhagen have used light and chlorine to eradicate low-concentration methane from air. The result gets us closer to being able to remove greenhouse gases from livestock housing, biogas production plants and wastewater treatment plants to benefit the climate. The research has just been published in the journal Environmental Research Letters

The Intergovernmental Panel on Climate Change (IPCC) has determined that reducing methane gas emissions will immediately reduce the rise in global temperatures. The gas is up to 85 times more potent of a greenhouse gas than CO2, and more than half of it is emitted by human sources, with cattle and fossil fuel production accounting for the largest share.

A unique new method developed by a research team at the University of Copenhagen’s Department of Chemistry and spin-out company Ambient Carbon has succeeded in removing methane from the air.

"A large part of our methane emissions comes from millions of low-concentration point sources like cattle and pig barns. In practice, methane from these sources has been impossible to concentrate into higher levels or remove. But our new result proves that it is possible using the reaction chamber that we’ve have built," says Matthew Stanley Johnson, the UCPH atmospheric chemistry professor who led the study.

Earlier, Johnson presented the research results at COP 28 in Dubai via an online connection and in Washington D.C. at the National Academy of Sciences, which advises the US government on science and technology.

Plant metabolism proves more complicated than previously understood

Ying Li, associate professor of horticulture and landscape architecture at Purdue University.
Photo Credit: Purdue Agricultural Communications /Tom Campbell

Plants have evolved fiendishly complicated metabolic networks. For years, scientists focused on how plants make secondary metabolites, the compounds that plants produce to enhance their defense and survival mechanisms.

“Only recently we started appreciating that the genes involved in making those specialized, secondary metabolites are being regulated,” said Ying Li, associate professor of horticulture and landscape architecture at Purdue University. “They are turned on when plants need to make secondary metabolites. And they are turned off when plants will no longer need to make them.”

Purdue’s Natalia Dudareva, Distinguished Professor of Biochemistry and Horticulture and Landscape Architecture, said, “Also, secondary metabolites are often toxic to cells when they accumulate to high levels, as we saw when we manipulated the resistance of the barriers that volatile secondary metabolites have to pass through to be released into the atmosphere. However, cells sense the accumulation of these toxic compounds and downregulate genes responsible for the formation of precursors for these volatiles.”

Tuesday, December 12, 2023

Unraveling the Conduction Mechanisms in a Novel Perovskite Oxide

Image Credit: Singkham

Scientists at the Tokyo Institute of Technology (Tokyo Tech), in collaboration with Tohoku University and others, have investigated a unique and promising material for next-generation electrochemical devices: hexagonal perovskite-related oxide Ba7Nb3.8Mo1.2O20.1. They unveiled the material's unique ion-transport mechanisms, something that will pave the way for better dual-ion conductors and a greener future.

Clean energy technologies are the cornerstone of sustainable societies, and solid-oxide fuel cells (SOFCs) and proton ceramic fuel cells (PCFCs) are among the most promising types of electrochemical devices for green power generation. These devices, however, still face challenges that hinder their development and adoption.

Ideally, SOFCs should operate at low temperatures to prevent unwanted chemical reactions from degrading their constituent materials. Unfortunately, most known oxide-ion conductors, a key component of SOFCs, only exhibit decent ionic conductivity at elevated temperatures. As for PCFCs, not only are they chemically unstable under carbon dioxide atmospheres, but they also require energy-intensive, high-temperature processing steps during manufacturing.

Dual-ion conductors, however, offer a solution to these problems. By facilitating the diffusion of both protons and oxide ions, these conductors can achieve high total conductivity at lower temperatures, thereby improving the performance of electrochemical devices. Still, the underlying conducting mechanisms behind this material remain poorly understood.

Monday, December 11, 2023

Shedding Light on the Synthesis of Sugars Before the Origin of Life

A recent study reveals that aldonates found in the Murchison meteorite can lead to the generation of pentoses via a non enzymatic process. A new study provides clues about primitive biochemistry and bring us closer to understanding the Origins of Life.
Illustration Credit: NASA's Goddard Space Flight Center Conceptual Image Lab.

Pentoses are essential carbohydrates in the metabolism of modern lifeforms, but their availability during early Earth is unclear since these molecules are unstable. A new study led by the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology, Japan, reveals a chemical pathway compatible with early Earth conditions and by which C6 aldonates could have acted as a source of pentoses without the need for enzymes. Their findings provide clues about primitive biochemistry and bring us closer to understanding the Origins of Life.

The emergence of life on Earth from simple chemicals is one of the most exciting yet challenging topics in biochemistry and perhaps all of science. Modern lifeforms can transform nutrients into all sorts of compounds through complex chemical networks; what's more, they can catalyze very specific transformations using enzymes, achieving a very fine control over what molecules are produced. However, enzymes did not exist before life emerged and became more sophisticated. Thus, it is likely that various nonenzymatic chemical networks existed at an earlier point in Earth's history, which could convert environmental nutrients into compounds that supported primitive cell-like functions.

Sunday, November 12, 2023

Researchers identify previously unknown step in cholesterol absorption in the gut

Illustration Credit: Scientific Frontline

UCLA researchers have described a previously unknown step in the complex process by which dietary cholesterol is processed in the intestines before being released into the bloodstream – potentially revealing a new pathway to target in cholesterol treatment.

Although an existing drug and statins impact part of the process, an experimental drug being studied in UCLA research labs appears to specifically target the newfound pathway, possibly adding a new approach to the cholesterol management toolbox.

“Our results show that certain proteins in the Aster family play a critical role in moving cholesterol through the absorption and uptake process,” said Dr. Peter Tontonoz, a UCLA professor and researcher in Pathology and Laboratory Medicine and Biological Chemistry, senior author of an article in Science. “The Aster pathway appears to be a potentially attractive target for limiting intestinal cholesterol absorption and reducing levels of plasma cholesterol.”

Cholesterol from food is absorbed by cells that line the inner surface of the intestines – enterocytes – where it is processed into droplets that eventually reach the bloodstream. But this journey involves a multistep process.

Wednesday, November 8, 2023

New antifungal molecule kills fungi without toxicity in human cells, mice

The mechanism for a critical but highly toxic antifungal is revealed in high resolution. Self-assembled Amphotericin B sponges (depicted in light blue) rapidly extract sterols (depicted in orange and white) from cells. This atomic level understanding yielded a novel kidney-sparing antifungal agent. 
Illustration Credit: Jose Vazquez

A new antifungal molecule, devised by tweaking the structure of prominent antifungal drug Amphotericin B, has the potential to harness the drug’s power against fungal infections while doing away with its toxicity, researchers at the University of Illinois Urbana-Champaign and collaborators at the University of Wisconsin-Madison report in the journal Nature.

Amphotericin B, a naturally occurring small molecule produced by bacteria, is a drug used as a last resort to treat fungal infections. While AmB excels at killing fungi, it is reserved as a last line of defense because it also is toxic to the human patient – particularly the kidneys. 

Ural Scientists Have Synthesized a New Substance for the Treatment of Alzheimer’s Disease


Scientists from the Ural Federal University, the Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences, together with colleagues from India have developed a method for creating safe and non-toxic substances that could become the basis for drugs for Alzheimer's disease. Using the new technology, they synthesized and tested several compounds of tacrine analogues, which toxicity is estimated to be from two to five times lower than that of the known drug. The description of the new method and the compounds obtained was published in the Journal of Heterocyclic Chemistry

"We believe that our technology will help to create safe substances that will become the basis for future drugs for Alzheimer's disease. Our studies have shown that the toxicity of the resulting substances is two to five times lower than that of tacrine. At the same time, they are effective as they help to increase the level of acetylcholine in the cerebral cortex, which slows down the destruction of neuronal connections. This allows patients to maintain their cognitive functions and lead an active and fulfilling life for as long as possible," explains Nibin Joy Muthipeedika, Senior Researcher at the UrFU Organic Synthesis Laboratory.

Monday, November 6, 2023

Phytoplankton uptake of methylmercury is controlled by thiols

In the sea, phytoplankton are the first step when methylmercury is absorbed into the food web. The image was taken under a microscope and shows a spring bloom of phytoplankton in the Bothnian Sea.
 Image Credit: Marlene Johansson

Methylmercury is one of the chemicals that poses the greatest threat to global public health. People ingest methylmercury by eating fish, but how does the mercury end up in the fish? A new study shows that the concentrations of so-called thiols in the water control how available methylmercury is to living organisms.

For methylmercury to enter the food web, it must be absorbed from the water by organisms and the uptake takes place primarily by phytoplankton. This results in a dramatic enrichment, where the levels of methylmercury can increase by a factor of 10,000 to 100,000. However, there is a great deal of variation between different aquatic environments, and it has so far been unclear what controls the process and why the variation is so large.

Thursday, November 2, 2023

One Punch Isn’t Enough to Overcome a Common Cancer Mutation

Acute myeloid leukemia as seen under a microscope.
Image Credit: Animalculist
(CC BY-SA 4.0)

Cancer cells are often a mess of mutations. About 20 to 25 percent of cancers involve mutations in a complex of molecules called SWI/SNF. Yet drugs designed to block SWI/SNF activity haven’t always worked as expected.

Researchers at Harvard Medical School have now figured out why.

As reported Nov. 2 in Cell, the team found that when drugs block SWI/SNF, a second molecule steps up to compensate.

Blocking this second molecule alongside SWI/SNF suppressed cancer cell growth in lab dishes, suggesting that a two-drug approach could make treatments more effective in people.

“I am excited about this work because it shows an alternative path forward for treating cancers in which the SWI/SNF complex is mutated,” said senior author Karen Adelman, the Edward S. Harkness Professor of Biological Chemistry and Molecular Pharmacology in the Blavatnik Institute at HMS, whose lab conducted the work.

“What’s interesting and meaningful about this study is it shows that a one-two punch, a double-agent therapy, could be really useful for keeping these cancer cells at bay,” she said.

FSU researchers capture high-resolution images of magnesium ions interacting with CRISPR gene-editing enzyme

Hong Li, professor in the Department of Chemistry and Biochemistry and director of the Institute of Molecular Biophysics.
Photo Credit: Devin Bittner/FSU College of Arts and Sciences

The gene-editing technology known as CRISPR has led to revolutionary changes in agriculture, health research and more.

In research published in Nature Catalysis, scientists at Florida State University produced the first high-resolution, time-lapsed images showing magnesium ions interacting with the CRISPR-Cas9 enzyme while it cut strands of DNA, providing clear evidence that magnesium plays a role in both chemical bond breakage and near-simultaneous DNA cutting.

“If you are cutting genes, you don’t want to have only one strand of DNA broken, because the cell can repair it easily without editing. You want both strands to be broken,” said Hong Li, professor in the Department of Chemistry and Biochemistry and director of the Institute of Molecular Biophysics. “You need two cuts firing close together. Magnesium plays a role in that, and we saw exactly how that works.”

Saturday, October 28, 2023

Mechanics of breast cancer metastasis discovered, offering target for treatment

A human breast cancer cell, adenocarcinoma MDA-MB-231, demonstrates metastatic-like adhesion, spreading and migrating in a collagen matrix designed to mimic soft tissue. New research led by Penn State reveals for the first time the mechanics behind how breast cancer cells may invade healthy tissues. The discovery, showing that a motor protein called dynein powers the movement of cancer cells in soft tissue models, offers new clinical targets against metastasis and has the potential to fundamentally change how cancer is treated. 
Image Credit: Erdem Tabdanov / Pennsylvania State University
(CC BY-NC-ND 4.0 DEED)

The most lethal feature of any cancer is metastasis, the spread of cancer cells throughout the body. New research led by Penn State reveals for the first time the mechanics behind how breast cancer cells may invade healthy tissues. The discovery, showing that a motor protein called dynein powers the movement of cancer cells in soft tissue models, offers new clinical targets against metastasis and has the potential to fundamentally change how cancer is treated.

“This discovery marks a paradigm shift in many ways,” said Erdem Tabdanov, assistant professor of pharmacology at Penn State and a lead co-corresponding author on the study, recently published in the journal Advanced Science. “Until now, dynein has never been caught in the business of providing the mechanical force for cancer cell motility, which is their ability to move themselves. Now we can see that if you target dynein, you could effectively stop motility of those cells and, therefore, stop metastatic dissemination.”

The project began as a collaboration between Penn State’s Department of Chemical Engineering and Penn State’s College of Medicine, before growing into a multi-institution partnership with researchers at the University of Rochester Medical Center, Georgia Institute of Technology, Emory University, and the U.S. Food and Drug Administration.

Thursday, October 26, 2023

Breakthrough synthesis method improves solar cell stability

Jin Hou is a Rice University graduate student and lead author on a study published in Nature Synthesis. Photo Credit: Courtesy of Jin Hou

Solar cell efficiency has soared in recent years due to light-harvesting materials like halide perovskites, but the ability to produce them reliably at scale continues to be a challenge.

A process developed by Rice University chemical and biomolecular engineer Aditya Mohite and collaborators at Northwestern University, the University of Pennsylvania and the University of Rennes yields 2D perovskite-based semiconductor layers of ideal thickness and purity by controlling the temperature and duration of the crystallization process.

Known as kinetically controlled space confinement, the process could help improve the stability and reduce the cost of halide perovskite-based emerging technologies like optoelectronics and photovoltaics.

Machine can quickly produce needed cells for cancer treatment

WSU researchers have developed a minifridge-sized bioreactor that is able to manufacture the cells, called T cells, at 95% of the maximum growth rate – about 30% faster than current technologies.
Photo Credit: Courtesy of Washington State University

A new tool to rapidly grow cancer-killing white blood cells could advance the availability of immunotherapy, a promising therapy which harnesses the power of the body’s immune response to target cancer cells.

Washington State University researchers have developed a minifridge-sized bioreactor that is able to manufacture the cells, called T cells, at 95% of the maximum growth rate – about 30% faster than current technologies. The researchers report on their work in the journal Biotechnology Progress. They developed it using T cells from cattle, developed by co-author Bill Davis of WSU’s Veterinary College, and anticipate it will perform similarly on human cells.

In 2022, there were over 1,400 different types of therapies using T cells in development, with seven approved by the FDA for a variety of cancer treatments. Use of the therapy, called chimeric antigen receptor T cell (CAR-T), is limited, however, because of the cost and time needed to grow T cells. Each infusion treatment for a cancer patient requires up to 250 million cells.

Better batteries for electric cars

Eric Ricardo Carreon Ruiz (left) and Pierre Boillat in front of part of PSI's Swiss spallation neutron source SINQ. There, at the BOA experimental station, they conducted their investigations.
Photo Credit: Paul Scherrer Institute/Mahir Dzambegovic

PSI researchers are using neutrons to make changes in battery electrolytes visible. The analysis enables better understanding of the physical and chemical processes and could aid in the development of batteries with better characteristics. The results have now been published in Science Advances.

The range is too limited, charging is too slow when it’s cold . . . the list of prejudices against electric cars is long. Even though progress is rapid, batteries remain the critical component for electromobility – as well as for many other applications, from smartphones to large storage devices designed to stabilize the power grid. The problem: Battery developers still lack a full understanding of what is happening, chemically and physically, during charging and discharging, especially in liquid electrolytes between the two electrodes through which charge carriers are exchanged.

Now Eric Ricardo Carreon Ruiz of PSI is bringing light into this darkness. A doctoral researcher in Pierre Boillat’s group at PSI, he is using neutrons from the Swiss spallation neutron source SINQ to investigate different electrolytes, studying for example their behavior at fluctuating temperatures. His results provide important insights that could help in the development of new electrolytes and higher-performance batteries.

Tuesday, October 24, 2023

SLAC scientists shed light on potential breakthrough biomedical molecule

Researchers employed advanced X-ray spectroscopic techniques at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), which allowed them to peer deeper into the chemical properties of nitroxide.
Illustration Credit: Greg Stewart/SLAC National Accelerator Laboratory

Scientists from the Department of Energy’s SLAC National Accelerator Laboratory have gained valuable insights into producing nitroxide, a molecule with potential applications in the biomedical field. While nitric oxide (NO) has long been on researchers' radar for its significant physiological effects, its lesser-known cousin, nitroxide (HNO), has remained largely unexplored.

The study, published recently in the Journal of the American Chemical Society, was born out of a joint endeavor between teams at SLAC’s Linac Coherent Light Source (LCLS) X-ray laser and Stanford Synchrotron Radiation Lightsource (SSRL).

Nitroxide has many of the same physiological effects of nitric oxide – such as its ability to fight germs, prevent blood clots, and relax and dilate blood vessels – with additional therapeutic properties, such as efficacy in treating heart failure, as well as more potent antioxidant activity and wound healing. However, it is not a chemically long-lived species so methods that enable its targeted delivery are key to future biomedical applications.

Cathode active materials for lithium-ion batteries could be produced at low temperatures

Reaction pathway of the hydroflux process to form layered lithium cobalt oxide (LiCoO2) at 300 °C.
Full Size Image
 Illustration Credit: Masaki Matsui

Lithium-ion batteries (LIB) are the most commonly used type of battery in consumer electronics and electric vehicles. Lithium cobalt oxide (LiCoO2) is the compound used for the cathode in LIB for handheld electronics. Traditionally, the synthesis of this compound requires temperatures over 800°C and takes 10 to 20 hours to complete.

A team of researchers at Hokkaido University and Kobe University, led by Professor Masaki Matsui at Hokkaido University’s Faculty of Science, have developed a new method to synthesize lithium cobalt oxide at temperatures as low as 300°C and durations as short as 30 minutes. Their findings were published in the journal Inorganic Chemistry.

“Lithium cobalt oxide can typically be synthesized in two forms,” Matsui explains. “One form is layered rocksalt structure, called the high-temperature phase, and the other form is spinel-framework structure, called the low-temperature phase. The layered LiCoO2 is used in Li-ion batteries.”

Treating the inflamed intestinal wall locally

For their self-forming gel, the researchers chose a lipid that is well tolerated and safe for use in humans. It is a fluid material at room temperature and can be administered as an enema into the inflamed area of the colon. There, at body temperature, it forms a viscous and sticky gel and remains adherent for at least six hours, gradually releasing the active ingredient.
Illustration Credit: © University of Bern, Marianna Carone

Treatment of the chronic inflammatory bowel disease ulcerative colitis often produces unsatisfactory results. Researchers at the University of Bern have now developed a lipid gel that is administered directly to the inflamed part of the intestine, where it remains and releases its active substance evenly. This could result in a new, targeted therapy approach with fewer side effects.

For diseases that affect a specific organ or tissue, a drug is usually most effective and well-tolerated if it is administered exactly where it is supposed to work in the body. If it is swallowed or injected, it distributes throughout the body, thus increasing the risk of side effects.

Researchers from the Department of Chemistry, Biochemistry and Pharmaceutical Sciences and the Institute of Tissue Medicine and Pathology at the University of Bern, together with colleagues from the University Hospital Zurich, have developed a self-forming, viscous lipid gel to deliver anti-inflammatory drugs directly to the wall of the colon or rectum. Thanks to this innovation, patients with ulcerative colitis, a chronic inflammation of the terminal part of the intestine, could be helped in a more targeted way and with fewer side effects.

Thursday, October 19, 2023

Antibiotic resistance can impair subsequent adaptations in bacteria, new Concordia research suggests

Farhan Chowdhury (left) and Brandon Findlay; “Instead of relying on antibiotic cocktails, we can have an alternative where sequential antibiotic therapies are applied. This can lead to better therapies and give patients more time to recover before resistance evolves.”
Photo Credit: Courtesy of Concordia University

Researchers at Concordia’s Department of Biology and Department of Chemistry and Biochemistry have discovered a possible new avenue of treatment that can help slow antibiotic resistance in bacteria.

PhD candidate Farhan Chowdhury and associate professor Brandon Findlay recently shared the results of their research in a recent paper published in the journal ACS Infectious Diseases. The researchers describe how a strain of the bacteria E. coli is left severely weakened after it has developed resistance to the antibiotic chloramphenicol (CHL). This weakness leaves the bacteria unable to adapt to other types of antibiotics.

Understanding the ways in which resistance impairments evolve can help clinicians better target pathogens in patients.

“Instead of relying on antibiotic cocktails, we can have an alternative where sequential antibiotic therapies are applied,” Chowdhury explains.

“Clinicians can select the sequence of medication by seeing if a first antibiotic imposes deficits on the bacteria, which would slow down the evolution of resistance in the subsequent ones. This can lead to better therapies and give patients more time to recover before resistance evolves.”

Electrons are quick-change artists in molten salts, chemists show

When exposed to radiation, electrons produced within molten zinc chloride, or ZnCl2, can be observed in three distinct singly occupied molecular orbital states, plus a more diffuse, delocalized state.
Illustration Credit: Hung H. Nguyen/University of Iowa

In a finding that helps elucidate how molten salts in advanced nuclear reactors might behave, scientists have shown how electrons interacting with the ions of the molten salt can form three states with different properties. Understanding these states can help predict the impact of radiation on the performance of salt-fueled reactors.

The researchers, from the Department of Energy’s Oak Ridge National Laboratory and the University of Iowa, computationally simulated the introduction of an excess electron into molten zinc chloride salt to see what would happen.

They found three possible scenarios. In one, the electron becomes part of a molecular radical that includes two zinc ions. In another, the electron localizes on a single zinc ion. In the third, the electron is delocalized, or spread out diffusely over multiple salt ions.

Because molten salt reactors are one of the reactor designs under consideration for future nuclear power plants, “the big question is what happens to molten salts when they’re exposed to high radiation,” said Vyacheslav Bryantsev, leader of the Chemical Separations group at ORNL and one of the scientists on the study and an author of the paper. “What happens to the salt that is used to carry the fuel in one of those advanced reactor concepts?”

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles