. Scientific Frontline: Bioengineering
Showing posts with label Bioengineering. Show all posts
Showing posts with label Bioengineering. Show all posts

Monday, April 8, 2024

First-of-its-kind integrated dataset enables genes-to-ecosystems research

DOE national laboratory scientists led by Oak Ridge National Laboratory have developed the first tree dataset of its kind, bridging molecular information about the poplar tree microbiome to ecosystem-level processes.
Illustration Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

The first-ever dataset bridging molecular information about the poplar tree microbiome to ecosystem-level processes has been released by a team of Department of Energy scientists led by Oak Ridge National Laboratory. The project aims to inform research regarding how natural systems function, their vulnerability to a changing climate, and ultimately how plants might be engineered for better performance as sources of bioenergy and natural carbon storage.

The data, described in Nature Publishing Group’s Scientific Data, provides in-depth information on 27 genetically distinct variants, or genotypes, of Populus trichocarpa, a poplar tree of interest as a bioenergy crop. The genotypes are among those that the ORNL-led Center for Bioenergy Innovation previously included in a genome-wide association study linking genetic variations to the trees’ physical traits. ORNL researchers collected leaf, soil and root samples from poplar fields in two regions of Oregon — one in a wetter area subject to flooding and the other drier and susceptible to drought. 

Details in the newly integrated dataset range from the trees’ genetic makeup and gene expression to the chemistry of the soil environment, analysis of the microbes that live on and around the trees and compounds the plants and microbes produce.

The dataset “is unprecedented in its size and scope,” said ORNL Corporate Fellow Mitchel Doktycz, section head for Bioimaging and Analytics and project co-lead. “It is of value in answering many different scientific questions.” By mining the data with machine learning and statistical approaches, scientists can better understand how the genetic makeup, physical traits and chemical diversity of Populus relate to processes such as cycling of soil nitrogen and carbon, he said. 

Friday, April 5, 2024

First atlas of the human ovary with cell-level resolution is a step toward artificial ovary

University of Michigan BME graduate student Jordan Machlin shows to prof. Ariella Shikanov and fellows grad student Margaret Brunette the images of oocytes in ovarian tissue she collected using RNA-fluorescence in situ hybridization.
Photo Credit: Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering

A new “atlas” of the human ovary provides insights that could lead to treatments restoring ovarian hormone production and the ability to have biologically related children, according to University of Michigan engineers.

This deeper understanding of the ovary means researchers could potentially create artificial ovaries in the lab using tissues that were stored and frozen before exposure to toxic medical treatments such as chemotherapy and radiation. Currently, surgeons can implant previously frozen ovarian tissue to temporarily restore hormone and egg production. However, this does not work for long because so few follicles—the structures that produce hormones and carry eggs—survive through reimplantation, the researchers say.

The new atlas reveals the factors that enable a follicle to mature, as most follicles wither away without releasing hormones or an egg. Using new tools that can identify what genes are being expressed at a single-cell level within a tissue, the team was able to home in on ovarian follicles that carry the immature precursors of eggs, known as oocytes.

Rapid, simultaneous detection of multiple bacteria achieved with handheld sensor

Marking bacteria electrochemically for rapid detection   
From left: Image of bacteria labeled with electrochemical markers, an electrochemical instrument to measure the data, and an image of the data displayed on a smartphone.     
Image Credit: Hiroshi Shiigi, Osaka Metropolitan University

Hearing the words E. coli or salmonella and food poisoning comes to mind. Rapid detection of such bacteria is crucial in preventing outbreaks of foodborne illness. While the usual practice is to take food samples to a laboratory to see the type and quantity of bacteria that forms in a petri dish over a span of days, an Osaka Metropolitan University research team has created a handheld device for quick on-site detection.

Led by Professor Hiroshi Shiigi of the Graduate School of Engineering, the team experimented with a biosensor that can simultaneously detect multiple disease-causing bacterial species within an hour.

“The palm-sized device for detection can be linked to a smartphone app to easily check bacterial contamination levels,” Professor Shiigi explained.

His team synthesized organic metallic nanohybrids of gold and copper that do not interfere with each other, so that electrochemical signals can be distinguished on the same screen-printed electrode chip of the biosensor. These organic−inorganic hybrids are made up of conductive polymers and metal nanoparticles. The antibody for the specific target bacteria was then introduced into these nanohybrids to serve as electrochemical labels.

Thursday, April 4, 2024

Airy cellulose from a 3D printer

Complexity and lightness: Empa researchers have developed a 3D printing process for biodegradable cellulose aerogel.
Photo Credit: Empa

Ultra-light, thermally insulating and biodegradable: Cellulose-based aerogels are versatile. Empa researchers have succeeded in 3D printing the natural material into complex shapes that could one day serve as precision insulation in microelectronics or as personalized medical implants.

At first glance, biodegradable materials, inks for 3D printing and aerogels don't seem to have much in common. All three have great potential for the future, however: "green" materials do not pollute the environment, 3D printing can produce complex structures without waste, and ultra-light aerogels are excellent heat insulators. Empa researchers have now succeeded in combining all these advantages in a single material. And their cellulose-based, 3D-printable aerogel can do even more.

The miracle material was created under the leadership of Deeptanshu Sivaraman, Wim Malfait and Shanyu Zhao from Empa's Building Energy Materials and Components laboratory, in collaboration with the Cellulose & Wood Materials and Advanced Analytical Technologies laboratories as well as the Center for X-ray Analytics. Together with other researchers, Zhao and Malfait had already developed a process for printing silica aerogels in 2020. No trivial task: Silica aerogels are foam-like materials, highly open porous and brittle. Before the Empa development, shaping them into complex forms had been pretty much impossible. "It was the logical next step to apply our printing technology to mechanically more robust bio-based aerogels," says Zhao.

The researchers chose the most common biopolymer on Earth as their starting material: cellulose. Various nanoparticles can be obtained from this plant-based material using simple processing steps. Doctoral student Deeptanshu Sivaraman used two types of such nanoparticles – cellulose nanocrystals and cellulose nanofibers – to produce the "ink" for printing the bio-aerogel.

The Rotisserie-Inspired Device That Could Revolutionize Cancer Surgery

The Zavaleta Lab’S Raman Rotisserie Device Creates a Map of the Surface of a Resected Tumor to Aid Surgeons in the Operating Room.
Photo Credit: Alex Czaja

Like many Texans, Cristina Zavaleta grew up enjoying the culinary delights of the state’s famous smokehouse BBQs. She couldn’t have imagined that those humble rotisseries of her childhood would one day inspire a game-changing device for the operating room that could help surgeons prevent tumor recurrence.

On a team excursion to Disneyland, the WiSE Gabilan Assistant Professor of Biomedical Engineering and her students were reminded of rotisseries when they encountered a food vendor at the Star Wars-themed land, Galaxy’s Edge. It was a lightbulb moment. The rotisserie configuration was a perfect way of intricately scanning excised tumors, with the help of the Zaveleta Lab’s unique nanoparticles, to light up where the cancerous tissue may not have been entirely removed from the patient. Surgeons could then be guided to precisely remove the remaining tumor, all while the patient is still under anesthesia. The result would reduce the need for traumatic repeat surgeries and potential cancer recurrence and metastasis.

Zavaleta and her team built the device, which they dubbed the Raman Rotisserie. It physically rotates a tumor specimen and works in conjunction with an imaging technique known as Raman spectroscopy, which scans the surface of the excised tumor. Their research, which aims to improve the success rate of breast cancer lumpectomies, has now been published in NPJ Imaging.

Wednesday, April 3, 2024

Discovery could end global amphibian pandemic

Panamanian golden frog
Photo Credit: Brian Gratwicke/U.S. Fish & Wildlife Service

A fungus devastating frogs and toads on nearly every continent may have an Achilles heel. Scientists have discovered a virus that infects the fungus, and that could be engineered to save the amphibians.

The fungus, Batrachochytrium dendrobatidis or Bd, ravages the skin of frogs and toads, and eventually causes heart failure. To date it has contributed to the decline of over 500 amphibian species, and 90 possible extinctions including yellow-legged mountain frogs in the Sierras and the Panamanian golden frog. 

A new paper in the journal Current Biology documents the discovery of a virus that infects Bd, and which could be engineered to control the fungal disease.

The UC Riverside researchers who found the virus are excited about the implications of their discovery. In addition to helping them learn about how fungal pathogens rise and spread, it offers the hope of ending what they call a global amphibian pandemic. 

“Frogs control bad insects, crop pests, and mosquitoes. If their populations all over the world collapse, it could be devastating,” said UCR microbiology doctoral student and paper author Mark Yacoub. 

“They’re also the canary in the coal mine of climate change. As temperatures get warmer, UV light gets stronger, and water quality gets worse, frogs respond to that. If they get wiped out, we lose an important environmental signal,” Yacoub said. 

Pollen is a promising sustainable tool in the bone regeneration process

Scientists have used pollen to grow hydroxyapatite capsules, so the mineral can better support bone regeneration
Photo Credit: Alex Jones

A study has shown pollen grains can be used as green templates for producing biomaterials, showcasing their potential to support drug delivery and bone regeneration.

With an increasingly ageing population, bone fractures are becoming more common. Bone is generally able to self-repair but if the fracture is too big or the person affected too fragile, as for example people with osteoporosis, the use of bone fillers can help.

Hydroxyapatite (HAp) is an inorganic mineral present in human bone and teeth, which can be used to support bone regeneration. It makes up somewhere between 65 per cent and 70 per cent of the weight of human bone. Healthcare professionals often use synthetic and natural HAp when carrying out bone repair treatments.

A team at the University of Portsmouth has worked with international colleagues to explore sustainable ways to improve the process. 

They examined the feasibility of using pollen grains as bio-templates for growing calcium phosphate minerals in the lab - particularly hydroxyapatite (HAp) and β-tricalcium phosphate (TCP), which are types of calcium phosphate used for bone repair.

Sunday, March 31, 2024

Scientists identify Achilles heel of lung cancer protein


Researchers have shown for the first time that a crucial interface in a protein that drives cancer growth could act as a target for more effective treatments.

The study, led by the Science and Technology Facilities Council (STFC) Central Laser Facility (CLF) with support from the Imaging Therapies and Cancer Group at King's, used advanced laser imaging techniques to identify structural details of a mutated protein which help it to evade drugs that target it.

The study was published in the journal Nature Communications and lays the groundwork for future research into more effective, long-lasting cancer therapies.

The Epidermal Growth Factor Receptor (EGFR) is a protein that sits on the surface of cells and receives molecular signals that tell the cell to grow and divide. In certain types of cancer, mutated EGFR stimulate uncontrolled growth, resulting in tumors.

Various cancer treatments block and inhibit mutant EGFR to prevent tumor formation, but these are limited as eventually cancerous cells commonly develop further EGFR mutations that are resistant to treatment.

Until now, how exactly these drug-resistant EGFR mutations drive tumor growth was not understood, hindering our ability to develop treatments that target them.

Saturday, March 30, 2024

Purdue researchers create biocompatible nanoparticles to enhance systemic delivery of cancer immunotherapy

Purdue University researchers are developing and validating patent-pending nanoparticles (left) to enhance immunotherapy effects against tumors. The nanoparticles are modified with adenosine triphosphate, or ATP, to recruit dendritic cells (right), which are immune cells that recognize tumor antigens and bring specialized immune cells to fight off tumors.
Image Credit: Yoon Yeo

Purdue University researchers are developing and validating patent-pending poly (lactic-co-glycolic acid), or PLGA, nanoparticles modified with adenosine triphosphate, or ATP, to enhance immunotherapy effects against malignant tumors.

The nanoparticles slowly release drugs that induce immunogenic cell death, or ICD, in tumors. ICD generates tumor antigens and other molecules to bring immune cells to a tumor’s microenvironment. The researchers have attached ATP to the nanoparticles, which also recruits immune cells to the tumor to initiate anti-tumor immune responses. 

Yoon Yeo leads a team of researchers from the College of Pharmacy, the Metabolite Profiling Facility in the Bindley Bioscience Center, and the Purdue Institute for Cancer Research to develop the nanoparticles. Yeo is the associate department head and Lillian Barboul Thomas Professor of Industrial and Molecular Pharmaceutics and Biomedical Engineering; she is also a member of the Purdue Institute for Drug Discovery and the Purdue Institute for Cancer Research.

The researchers validated their work using paclitaxel, a chemotherapy drug used to treat several types of cancers. They found that tumors grew slower in mice treated with paclitaxel enclosed within ATP-modified nanoparticles than in mice treated with paclitaxel in non-modified nanoparticles.

“When combined with an existing immunotherapy drug, the ATP-modified, paclitaxel-loaded nanoparticles eliminated tumors in mice and protected them from rechallenge with tumor cells,” Yeo said.

Friday, March 29, 2024

Rice study identifies protein responsible for gas vesicle clustering in bacteria

Zongru Li (left) and George Lu
Photo Credit: Anna Stafford/Rice University

Gas vesicles are hollow structures made of protein found in the cells of certain microorganisms, and researchers at Rice University believe they can be programmed for use in biomedical applications.

“Inside cells, gas vesicles are packed in a beautiful honeycomb pattern. How this pattern is formed has never been thoroughly understood. We are presenting the first identification of a protein that can regulate this patterning, and we believe this will be a milestone in molecular microbiology,” said George Lu, assistant professor of bioengineering and a Cancer Prevention and Research Institute of Texas scholar.

Lu and colleagues have published their findings in a paper published in Nature Microbiology. The lead author is Zongru Li, a fourth-year bioengineering doctoral student in Lu’s Laboratory for Synthetic Macromolecular Assemblies.

“Gas vesicles are cylindrical tubes closed by conical end caps,” Li said. “They provide buoyancy within the cells of their native hosts.”

Thursday, March 28, 2024

New Method Developed to Isolate HIV Particles

The image shows PNF-coated magnetic microbeads that bind HIV particles to their surface.
Image Credit: Torsten John

Researchers at Leipzig University and Ulm University have developed a new method to isolate HIV from samples more easily, potentially making it easier to detect infection with the virus. They focus on peptide nanofibrils (PNFs) on magnetic microparticles, a promising tool and hybrid material for targeted binding and separation of viral particles. They have published their new findings in the journal Advanced Functional Materials.

“The presented method makes it possible to efficiently capture, isolate and concentrate virus particles, which may improve the sensitivity of existing diagnostic tools and analytical tests,” says Professor Bernd Abel of the Institute of Technical Chemistry at Leipzig University. The nanofibrils used – small, needle-like structures – are based on the EF-C peptide, which was first described in 2013 by Professor Jan Münch from Ulm University and Ulm University Medical Center. EF-C is a peptide consisting of twelve amino acids that forms nanoscale fibrils almost instantaneously when dissolved in polar solvents. These can also be applied to magnetic particles. “Using the EF-C peptide as an example, our work shows how peptide fibrils on magnetic particles can have a completely new functionality – the more or less selective binding of viruses. Originally, fibrils of this kind were more likely to be associated with neurodegenerative diseases,” adds Dr Torsten John, co-first author of the study and former doctoral researcher under Professor Abel at Leipzig University. He is now a junior researcher at the Max Planck Institute for Polymer Research in Mainz, Germany.

Tuesday, March 26, 2024

Two-Way Cell-based Treatment Repairs Muscle After Rotator Cuff Injury

A combination of mobilizing agent, designed to “push” pro-healing cells into the blood, and SDF-1a, designed to “pull” the cells into the injury site, leads to an increase in muscle regeneration following a rotator cuff tear. Muscle regeneration was characterized based on the number of centrally located nuclei (marked with the white arrows).
Image Credit: Courtesy of the researchers / Georgia Institute of Technology

A team of Georgia Tech researchers has introduced a new therapeutic system to offset the poor clinical outcomes often associated with common rotator cuff surgery.

It’s the kind of surgery that makes headlines whenever a famous athlete is sidelined with a torn rotator cuff. Major League Baseball All-Star pitchers Clayton Kershaw and Justin Verlander, for example, both had rotator cuff surgeries and made successful comebacks.

For those of us who can’t throw baseballs 95 miles an hour, the rotator cuff may tear over time from repeated overhead motions (painters and carpenters, for instance). Or an injury can occur as we age and our body’s tissues naturally degenerate. And although rotator cuff injuries are common, they can be serious, leading to muscle degeneration after surgery.

Now, two professors from the Wallace H. Coulter Department of Biomedical Engineering, a joint department of Georgia Tech and Emory University, have addressed the problem with a novel cell-based dual treatment, which they describe in a study published recently in the journal Tissue Engineering.

Friday, March 22, 2024

Messenger RNAs with multiple “tails” could lead to more effective therapeutics

Graphic showing scientists adding "tails" to mRNA molecules
Illustration Credit: Catherine Boush, Broad Communications

Messenger RNA (mRNA) made its big leap into the public limelight during the pandemic, thanks to its cornerstone role in several COVID-19 vaccines. But mRNAs, which are genetic sequences that instruct the body to produce proteins, are also being developed as a new class of drugs. For mRNAs to have broad therapeutic uses, however, the molecules will need to last longer in the body than those that make up the COVID vaccines. 

Researchers from the Broad Institute of MIT and Harvard and MIT have engineered a new mRNA structure by adding multiple “tails” to the molecules that boosted mRNA activity levels in cells by 5 to 20 times. The team also showed that their multi-tailed mRNAs lasted 2 to 3 times longer in animals compared to unmodified mRNA, and when incorporated into a CRISPR gene-editing system, resulted in more efficient gene editing in mice. 

The new mRNAs, reported in Nature Biotechnology, could potentially be used to treat diseases that require long-lasting treatments that edit genes or replace faulty proteins. 

“The use of mRNA in COVID vaccines is fantastic, which prompted us to explore how we could expand the possible therapeutic applications for mRNA,” said Xiao Wang, senior author of the new paper, a core institute member at the Broad and an assistant professor of chemistry at MIT. “We’ve shown that non-natural structures can function so much better than naturally occurring ones. This research has given us a lot of confidence in our ability to modify mRNA molecules chemically and topologically.”

Two keys needed to crack three locks for better engineered blood vessels

Two proteins can trigger the signaling cascades needed to help differentiate stem cells into endothelial cells that can form tubular-like vessels in a dish, according to a team led by Penn State researchers. The finding has implications for developing drug-testing platforms and other clinical applications. 
Image Credit: Lian Lab / Pennsylvania State University

Blood vessels engineered from stem cells could help solve several research and clinical problems, from potentially providing a more comprehensive platform to screen if drug candidates can cross from the blood stream into the brain to developing lab-grown vascular tissue to support heart transplants, according to Penn State researchers. Led by Xiaojun “Lance” Lian, associate professor of biomedical engineering and of biology, the team discovered the specific molecular signals that can efficiently mature nascent stem cells into the endothelial cells that comprise the vessels and regulate exchanges to and from the blood stream.

They published their findings in Stem Cell Reports. The team already holds a patent on foundational method developed 10 years ago and has filed a provisional application for the expanded technology described in this paper.

The reserchers found they could achieve up to a 92% endothelial cell conversion rate by applying two proteins — SOX17 and FGF2 — to human pluripotent stem cells. This type of stem cell, which the researchers derived from a federally approved stem cell line, can differentiate into almost any other cell type if provided the right proteins or other biochemical signals. SOX17 and FGF2 engage three markers in stem cells, triggering a growth cascade that not only converts them to endothelial cells but also enables them to form tubular-like vessels in a dish.

Thursday, March 21, 2024

World's first high-resolution brain developed by 3D printer

Franziska Chalupa-Gantner and Aleksandr Ovsianikov at work.
Photo Credit: Courtesy of Technische Universität Wien

In a joint project between TU Wien and MedUni Vienna, the world's first 3D-printed "brain phantom" has been developed, which is modelled on the structure of brain fibres and can be imaged using a special variant of magnetic resonance imaging (dMRI). As a scientific team led by TU Wien and MedUni Vienna has now shown in a study, these brain models can be used to advance research into neurodegenerative diseases such as Alzheimer's, Parkinson's and multiple sclerosis. The research work was published in the journal Advanced Materials Technologies.

Magnetic resonance imaging (MRI) is a widely used diagnostic imaging technique that is primarily used to examine the brain. MRI can be used to examine the structure and function of the brain without the use of ionizing radiation. In a special variant of MRI, diffusion-weighted MRI (dMRI), the direction of the nerve fibers in the brain can also be determined. However, it is very difficult to correctly determine the direction of nerve fibers at the crossing points of nerve fiber bundles, as nerve fibers with different directions overlap there. In order to further improve the process and test analysis and evaluation methods, an international team in collaboration with the TU Wien and the Medical University of Vienna developed a so-called "brain phantom", which was produced using a high-resolution 3D printing process.

Tuesday, March 19, 2024

A protein found in human sweat may protect against Lyme disease

Human sweat contains a protein that may protect against Lyme disease, according to a study from MIT and the University of Helsinki. About one-third of the population carries a genetic variant of this protein that is associated with Lyme disease in genome-wide association studies.
Photo Credit: Erik Karits

Lyme disease, a bacterial infection transmitted by ticks, affects nearly half a million people in the United States every year. In most cases, antibiotics effectively clear the infection, but for some patients, symptoms linger for months or years.

Researchers at MIT and the University of Helsinki have now discovered that human sweat contains a protein that can protect against Lyme disease. They also found that about one-third of the population carries a genetic variant of this protein that is associated with Lyme disease in genome-wide association studies.

It’s unknown exactly how the protein inhibits the growth of the bacteria that cause Lyme disease, but the researchers hope to harness the protein’s protective abilities to create skin creams that could help prevent the disease, or to treat infections that don’t respond to antibiotics.

“This protein may provide some protection from Lyme disease, and we think there are real implications here for a preventative and possibly a therapeutic based on this protein,” says Michal Caspi Tal, a principal research scientist in MIT’s Department of Biological Engineering and one of the senior authors of the new study.

Hanna Ollila, a senior researcher at the Institute for Molecular Medicine at the University of Helsinki and a researcher at the Broad Institute of MIT and Harvard, is also a senior author of the paper, which appears today in Nature Communications. The paper’s lead author is Satu Strausz, a postdoc at the Institute for Molecular Medicine at the University of Helsinki.

Fighting heart attack down to the smallest vessels

Graphical Abstract of drug infusion for MVO treatment via regular vs. balloon catheter.
Image Credit: © ARTORG Center

Researchers in Bern have co-developed and tested a new method to combat the blockage of tiny coronary arteries after a heart attack. The new approach, born from a cooperation of engineers, clinicians, and industry, offers a treatment option to prevent the death of heart tissue after a heart attack, responsible for poor long-term patient health.

In myocardial infarction (heart attack), the supply of the heart muscle with oxygen and nutrients is blocked by an obstruction of a major coronary artery. Even after recanalization of this artery via stent, secondary obstructions in the cardiac microcirculation (Microvascular Obstruction, MVO) occur in 40-60% of all patients. This can lead to the death of heart tissue, with a negative impact on the long-term cardiovascular health of patients. Around 200,000 people are affected by this in Switzerland every year.

Monday, March 18, 2024

Bioengineers manage a first: measuring pH in cell condensates

Researchers were able to measure pH in a type of condensate called the nucleolus, the site of ribosome production. They report that the distinct protein compositions of nucleoli give them an acidic character.
 Image Credit: Matthew King

Scientists trying to understand the physical and chemical properties that govern biomolecular condensates now have a crucial way to measure pH and other emergent properties of these enigmatic, albeit important cellular compartments.

Condensates are communities of proteins and nucleic acids. They lack a membrane and come together and fall apart as needed. The nucleolus is a prominent condensate in cells. It serves vital roles in cellular physiology and is the site of ribosome production.

Ribosomes are the multi-protein and RNA assemblies where the genetic code is translated to synthesize proteins. Impairment of ribosome production and other nucleolar dysfunctions lie at the heart of cancers, neurodegeneration and developmental disorders.

In a first for the condensate field, researchers from the lab of Rohit Pappu, the Gene K. Beare Distinguished Professor of biomedical engineering, and colleagues in the Center for Biomolecular Condensates in the McKelvey School of Engineering at Washington University in St. Louis, figured out how nucleolar substructures are assembled. This organization gives rise to unique pH profiles within nucleoli, which they measured and compared with the pH of nearby non-nucleolar condensates including nuclear speckles and Cajal bodies.

Monday, March 11, 2024

Brain Waves Travel in One Direction When Memories Are Made and the Opposite When Recalled

Traveling wave propagation directions in the memory task reveal how the brain quickly coordinates activity and shares information across multiple regions.
Photo Credit: Hongui Zhang

In the space of just a few seconds, a person walking down a city block might check their phone, yawn, worry about making rent, and adjust their path to avoid a puddle. The smell from a food cart could suddenly conjure a memory from childhood, or they could notice a rat eating a slice of pizza and store the image as a new memory. 

For most people, shifting through behaviors quickly and seamlessly is a mundane part of everyday life. 

For neuroscientists, it’s one of the brain’s most remarkable capabilities. That’s because different activities require the brain to use different combinations of its many regions and billions of neurons. How it manages to do this so rapidly has been an open question for decades. 

The study

In a paper published in Nature Human Behaviour, a team of researchers, led by Joshua Jacobs, associate professor of biomedical engineering at Columbia Engineering, shed new light on this question. By carefully monitoring neural activity of people who were recalling memories or forming new ones, the researchers managed to detect how a newly appreciated type of brainwave — traveling waves — influences the storage and retrieval of memories. 

“Broadly, we found that waves tended to move from the back of the brain to the front while patients were putting something into their memory,” said the paper’s co-author Uma R. Mohan, a postdoctoral researcher at NIH and former postdoctoral researcher in the Electrophysiology, Memory, and Navigation Laboratory at Columbia Engineering. “When patients were later searching to recall the same information, those waves moved in the opposite direction, from the front towards the back of the brain,” she said. 

Saturday, March 9, 2024

Shape-shifting ultrasound stickers detect post-surgical complications

Three variations of the soft, flexible ultrasound sticker device displayed on a finger.
Photo Credit: Jiaqi Liu / Northwestern University

Researchers led by Northwestern University and Washington University School of Medicine in St. Louis have developed a new, first-of-its-kind sticker that enables clinicians to monitor the health of patients’ organs and deep tissues with a simple ultrasound device.

When attached to an organ, the soft, tiny sticker changes in shape in response to the body’s changing pH levels, which can serve as an early warning sign for post-surgery complications such as anastomotic leaks. Clinicians then can view these shape changes in real time through ultrasound imaging.

Currently, no existing methods can reliably and non-invasively detect anastomotic leaks — a life-threatening condition that occurs when gastrointestinal fluids escape the digestive system. By revealing the leakage of these fluids with high sensitivity and high specificity, the non-invasive sticker can enable earlier interventions than previously possible. Then, when the patient has fully recovered, the biocompatible, bioresorbable sticker simply dissolves away — bypassing the need for surgical extraction.

The study is published in the journal Science. The paper outlines evaluations across small and large animal models to validate three different types of stickers made of hydrogel materials tailored for the ability to detect anastomotic leaks from the stomach, the small intestine and the pancreas.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles