. Scientific Frontline

Friday, November 21, 2025

Rice engineers show lab grown diamond films can stop costly mineral buildup in pipes

Pulickel Ajayan and Xiang Zhang
Photo Credit: Jeff Fitlow/Rice University

In industrial pipes, mineral deposits build up the way limescale collects inside a kettle ⎯ only on a far larger and more expensive scale. Mineral scaling is a major issue in water and energy systems, where it slows flow, strains equipment and drives up costs.

A new study by Rice University engineers shows that lab-grown diamond coatings could resolve the issue, providing an alternative to chemical additives and mechanical cleaning, both of which offer only temporary relief and carry environmental or operational downsides.

“Because of these limitations, there is growing interest in materials that can naturally resist scale formation without constant intervention,” said Xiang Zhang, assistant research professor of materials science and nanoengineering and a first author on the study alongside Rice postdoctoral researcher Yifan Zhu. “Our work addresses this urgent need by identifying a coating material that can ‘stay clean’ on its own.”

Forensic Science: In-Depth Description

Image Credit: Scientific Frontline / stock image AI

Forensic Science is the rigorous application of scientific principles and methods to matters of criminal and civil law is the rigorous application of scientific principles and methods to matters of criminal and civil law. It serves as the critical intersection between the scientific community and the justice system, tasked with the collection, preservation, and analysis of physical evidence to reconstruct events, identify perpetrators or victims, and establish objective facts for legal proceedings.

Genetic Engineering: Changing the Number of Chromosomes in Plants Using Molecular Scissors

For the first time, KIT researchers managed to reduce the number of chromosomes in a plant by fusing two chromosomes.
Illustration Credit: Michelle Rönspies – KIT

Higher yields, greater resilience to climatic changes or diseases – the demands on crop plants are constantly growing. To address these challenges, researchers at Karlsruhe Institute of Technology (KIT) are developing new methods in genetic engineering. In cooperation with other German and Czech researchers, they succeeded for the first time in leveraging the CRISPR/Cas molecular scissors for changing the number of chromosomes in the Arabidopsis thaliana model organism in a targeted way – without any adverse effects on plant growth. This discovery opens up new perspectives for plant breeding and agriculture.  

Evolutionary Biology: In-Depth Description

Image Credit: Scientific Frontline / stock image

Evolutionary Biology is the sub-discipline of biology that studies the evolutionary processes that produced the diversity of life on Earth, starting from a single common ancestor. These processes include natural selection, common descent, and speciation. It serves as the unifying theory of the biological sciences, providing a framework that explains the unity and diversity of organisms by investigating the changes in the heritable traits of biological populations over successive generations.

An electric discovery: Pigeons detect magnetic fields through their inner ear

Photo Credit: Nancy Hughes

In 1882, the French Naturalist Camille Viguier was amongst the first to propose the existence of a magnetic sense. His speculation proved correct; many animals – from bats to migratory birds and sea turtles use the Earth’s magnetic field to navigate. Yet despite decades of research, scientists still know surprisingly little about the magnetic sense. How do animals detect magnetic fields? Which brain circuits process the information? And where in the body is this sensory system located? 

Viguier audaciously proposed that magnetic sensing might occur in the inner ear relying on the generation of small electric currents. This idea was ignored and then forgotten; a historical musing lost with the passage of time. Now more than a century later it has been resurrected by neuroscientists at LMU in a paper published in Science. A team led by Professor David Keays took an unbiased approach to studying pigeon brains exposed to magnetic fields. 

New stem cell medium creates contracting canine heart muscle cells

Canine iPS cells cultured in a newly developed medium successfully differentiated into functional cardiomyocytes
Image Credit: Osaka Metropolitan University

Scientists obtained stem cells expressing cardiac muscle-specific genes and proteins. The cells displayed regular rhythmic contractions similar to a heart, confirming that they were functional cardiomyocyte cells.

In research, induced pluripotent stem (iPS) cells are derived from skin, urine, or blood samples and developed into other cells, like heart tissue, that researchers want to study. Because of the similarities between certain dog and human diseases, canine iPS cells have potential uses in regenerative medicine and drug discovery. 

How the cheese-noodle principle could help counter Alzheimer's

Jinghui Luo is a researcher at the Center for Life Sciences at the Paul Scherrer Institute PSI. He studies accumulations of so-called amyloid proteins, which lead to nerve damage in the brain. His research aims to help mitigate neurodegenerative diseases such as Alzheimer's and Parkinson's in the long term.  Photo Credit: © Paul Scherrer Institute PSI/Markus Fischer

Researchers at the Paul Scherrer Institute PSI have clarified how spermine – a small molecule that regulates many processes in the body's cells – can guard against diseases such as Alzheimer's and Parkinson's: it renders certain proteins harmless by acting a bit like cheese on noodles, making them clump together. This discovery could help combat such diseases. The study has now been published in the journal Nature Communications.

Our life expectancy keeps rising – and as it does, age-related illnesses, including neurodegenerative diseases such as Alzheimer's and Parkinson's, become increasingly common. These diseases are caused by accumulations in the brain of harmful protein structures consisting of incorrectly folded amyloid proteins. Their shape is reminiscent of fibers or spaghetti. To date, there is no effective therapy to prevent or eliminate such accumulations. 

Thursday, November 20, 2025

Subverting Plasmids To Combat Antibiotic Resistance

Two types of plasmids, colored red and blue, form intricate patterns as they compete for dominance in a bacterial colony.
Image Credit: Fernando Rossine

Researchers in the Blavatnik Institute at Harvard Medical School have just opened a new window into understanding the development of antibiotic resistance in bacteria.

The work not only reveals principles of evolutionary biology but also suggests a new strategy to combat the antibiotic resistance crisis, which kills an estimated 1.3 million people per year worldwide.

Members of the labs of Michael Baym, associate professor of biomedical informatics, and Johan Paulsson, professor of systems biology, devised a way to track the evolution and spread of antibiotic resistance in individual bacteria by measuring competition among plasmids.

Environmental Science: In-Depth Description

Photo Credit: Esa Kaifa

Environmental science is an interdisciplinary academic field that integrates physical, biological, and information sciences to study the environment and identify solutions to environmental problems. By combining disciplines such as ecology, biology, physics, chemistry, plant science, zoology, mineralogy, oceanography, limnology, soil science, geology and physical geography, and atmospheric science, it seeks to understand the complex interactions between the natural world and human societies.

The primary goal of environmental science is to learn how the natural world works, to understand how we interact with the environment, and to determine how we can live sustainably without degrading our life-support system.

Focused Ultrasound Passes First Test in Treatment of Brain Cancer in Children

Pediatric oncologist Stergios Zacharoulis and biomedical engineer Elisa Konofagou are pioneering the use of focused ultrasound to treat brain cancer in children and dozens of other brain diseases
Photo Credit: Rudy Diaz / Columbia University Vagelos College of Physicians and Surgeons.

Columbia University researchers are the first to show that focused ultrasound—a non-invasive technique that uses sound waves to enhance the delivery of drugs into the brain—can be safely used in children being treated for brain cancer.

The focused ultrasound technique, developed by Columbia engineers, was tested in combination with chemotherapy in three children with diffuse midline glioma, a rare and aggressive brain cancer that is universally fatal.

The study found that focused ultrasound successfully opened the blood-brain barrier in all three patients, allowing the chemotherapy drug to reach the tumors and leading to some improvement in patient mobility, though all three patients eventually died from their disease or complications of COVID.

Featured Article

Researchers link Antarctic ice loss to ‘storms' at the ocean's subsurface

Mattia Poinelli, a UC Irvine postdoctoral scholar in Earth system science and NASA JPL research affiliate, outlines in a newly published stu...

Top Viewed Articles