. Scientific Frontline

Friday, November 28, 2025

When Quantum Gases Refuse to Follow the Rules

The team  Frederik Møller, Philipp Schüttelkopf and Jörg Schmiedmayer
Photo Credit: © Technische Universität Wien

At TU Wien, researchers have created a one-dimensional “quantum wire” made from a gas of ultracold atoms, where mass and energy flow without friction or loss. 

In physical systems, transport takes many forms, such as electric current through a wire, heat through metal, or even water through a pipe. Each of these flows can be described by how easily the underlying quantity—charge, energy, or mass—moves through a material. Normally, collisions and friction lead to resistance causing these flows to slow down or fade away. But in a new experiment at TU Wien, scientists have observed a system where that doesn’t happen at all. 

By confining thousands of rubidium atoms to move along a single line using magnetic and optical fields, they created an ultracold quantum gas in which energy and mass move with perfect efficiency. The results, now published in the journal Science, show that even after countless collisions, the flow remains stable and undiminished, thus revealing a kind of transport that defies the rules of ordinary matter. 

Later than expected: domestic cats arrived in Europe only 2000 years ago

Cat in the old town of Şanlıurfa (southeastern Anatolia, Turkey).
Photo Credit: © Nadja Pöllath, SNSB

Cats are among the most successful domestic mammals; they are widespread throughout the world, even in the most remote areas around the globe. Their estimated number is around one billion. Earlier studies have shown that the domestic cat Felis catus descended from the North African wildcat Felis lybica lybica. 

Archaeological remains also prove that cats joined humans almost 10,000 years ago, but the complex evolution of their domestication, particularly the geographical region, the timing and the circumstances of their spread, remain largely unclear to this day. This is partly due to the scarcity of feline remains in archaeological contexts and the difficulty of attributing skeletal fragments to wild or domesticated forms. 

Stars defy the black hole: research in Cologne shows stable orbits around Sagittarius A*

Image Credit: NASA

New observations made with the ERIS instrument at the Very Large Telescope facility disprove from the assumption that the supermassive black hole at the center of the Milky Way devours nearby dust objects. 

An international research team led by PD Dr Florian Peißker at the University of Cologne has used the new observation instrument ERIS (Enhanced Resolution Imager and Spectrograph) at the Very Large Telescope (VLT) facility in Chile to show that several so-called ‘dusty objects’ follow stable orbits around the supermassive black hole Sagittarius A* at the center of our galaxy. Earlier studies had surmised that some of these objects could be swallowed up by the black hole. New data refutes this assumption. The findings have been published under the title ‘ABCD’ in the journal Astronomy & Astrophysics

The study focused on four of these unusual celestial bodies, which have been the subject of much discussion in recent years. In particular, G2 was long regarded as a pure dust and gas cloud. It was thought to have been initially elongated by the gravitational pull of Sagittarius A*, a process known as 'spaghettification', before being destroyed. However, the specific observations made with ERIS, which captures radiation in the near-infrared range, show that G2 follows a stable orbit. This is an indication that there is a star inside the dust cloud. These results confirm that the center of the Milky Way is not only destructive but can also be surprisingly stable. 

Researchers identify key molecular mechanism in cell communication

Albert Lu (left) and Carles Enrich (right).
Photo Credit: Courtesy of University of Barcelona

A new study describes a key molecular mechanism that explains how cells exchange information through extracellular vesicles (EVs), small particles with great therapeutic potential. The results, published in the Journal of Extracellular Vesicles, reveal that the Commander protein complex, previously known for its role in membrane recycling, also coordinates the entry and internal destination of vesicles within the cell. This finding sheds light on the process of intercellular communication, which is fundamental to the development of new therapies and diagnostic tools.

The study was led by Professor Albert Lu, from the Faculty of Medicine and Health Sciences of the UB and the CELLEX Biomedical Research Centre (IDIBAPS-UB), and María Yáñez-Mó, from the Severo Ochoa Centre for Molecular Biology (CSIC-UAM). Carles Enrich, professor at the same faculty (IDIBAPS-UB), also participated. 

According to Albert Lu, “understanding how receptor cells capture and process extracellular vesicles is essential to understanding how our body communicates at the molecular level.” “Furthermore — he continues — this knowledge is key to harnessing the therapeutic and diagnostic potential of these vesicles, since their effectiveness depends on being able to direct them and have them captured by the appropriate target cells.” 

Thursday, November 27, 2025

Marine Biology: In-Depth Description

Photo Credit: Neeraj Pramanik

Marine Biology is the scientific study of organisms in the ocean and other brackish bodies of water. This discipline encompasses a vast spectrum of life forms, ranging from microscopic picoplankton to the blue whale, the largest animal on Earth. It is an integrative field that combines elements of geology, chemistry, physical oceanography, and biology to understand the physiology, behavior, and ecological roles of marine organisms, as well as their complex interactions with the high-salinity environment.

Research on chickens can help endangered species

The difference between a wild and a domesticated variety within a species is often greater than the difference between different species.
Photo Credit: Charlotte Perhammar

LiU researchers are mapping the genetic differences between the domestic chicken and its wild relative the junglefowl. They will now try to find out whether it is possible to use genetic engineering to “undomesticated” domesticated chickens. This could be a tool for conserving endangered species – and perhaps recreating extinct animals. 

Imagine a world without a dog – often called a man’s best friend. A world also without cows, pigs or sheep. If our ancestors had not domesticated many animals and plants a few thousand years ago, there would be no fields of grain, rapeseed or cotton. All animals would be wild. Humans would hunt, fish, and gather plants in nature to put food on the table. In short, virtually every aspect of our lives would be radically affected if the phenomenon of domestication were to be deleted from the history of the Earth. 

Counting salmon is a breeze with airborne eDNA

A male Coho salmon, featuring the characteristic hooked nose, returns to spawn from the Oregon Coast.
Photo Credit: NOAA Fisheries

During the annual salmon run last fall, University of Washington researchers pulled salmon DNA out of thin air and used it to estimate the number of fish that passed through the adjacent river. Aden Yincheong Ip, a UW research scientist of marine and environmental affairs, began formulating the driving hypothesis for the study while hiking on the Olympic Peninsula.

“I saw the fish jumping and the water splashing and I started thinking — could we recover their genetic material from the air?,” he said.

The researchers placed air filters at several sites on Issaquah Creek, near the Issaquah Salmon Hatchery in Washington. To their amazement, the filters captured Coho salmon DNA, even 10 to 12 feet from the river. Scientists collect environmental DNA, or eDNA, to identify species living in or passing through an area, but few have attempted to track aquatic species by sampling air.

Immune cells turn damage into repair

Intestines one week after abdominal irradiation, showing proliferating epithelial cells (in brown).
Image Credit: Julius Fischer / TUM 

Patients receiving intensive cancer treatments often suffer from severe damage to the intestinal lining. Researchers from the Technical University of Munich (TUM) and the Leibniz Institute for Immunotherapy (LIT) have discovered that certain immune cells can trigger healing processes. They use inflammatory signals to do so - which is surprising, as inflammation in the intestine was previously thought to be primarily harmful. This finding could open new possibilities for therapies. 

Regulatory T cells (Tregs), a specialized type of immune cells, are usually seen as “peacekeepers” that prevent excessive immune attacks. In a study  published in Signal Transduction and Targeted Therapy, researchers from the Department of Radiation Oncology at the TUM University Hospital and the LIT Cooperation Group “Innate Immune Sensing in Cancer and Transplantation” uncovered how the body's own immune system can be harnessed to repair the intestinal lining and improve survival.  

Polyphenol-rich diets linked to better long-term heart health

Photo Credit: Adél Grőber

People who regularly consume polyphenol-rich foods and drinks, such as tea, coffee, berries, cocoa, nuts, whole grains and olive oil, may have better long-term heart health. 

The research, led by King’s College London, found that those with higher adherence to polyphenol-rich dietary patterns had lower predicted cardiovascular disease (CVD) risk. 

Polyphenols are natural compounds found in plants that are linked to various health benefits, including improved heart, brain, and gut health. 

The study, published today in BMC Medicine, followed more than 3,100 adults from the TwinsUK cohort for over a decade, found that diets rich in specific groups of polyphenols were linked to healthier blood pressure and cholesterol profiles, contributing to lower CVD risk scores. 

Clean biogas – measurable everywhere

Ayush Agarwal worked on the analysis of biogas during his doctoral studies at the PSI Center for Energy and Environmental Sciences at PSI.
Photo Credit: © Paul Scherrer Institute PSI/Markus Fischer

Researchers at the Paul Scherrer Institute PSI have developed a new analytical method that can detect even tiny amounts of critical impurities in biogas. This procedure can be used even by small biogas plants without the need for major investment – thus facilitating the energy transition.

The market for biogas is growing. According to the Swiss Federal Office of Energy, Switzerland fed 471 gigawatt hours of this fuel into the natural gas grid last year – roughly twice the amount fed in ten years ago. This comes with an increase in the need to measure impurities in the biogas quickly and reliably, because strict quality criteria apply to this green gas.  

Researchers at PSI’s Center for Energy and Environmental Sciences have now come up with a solution to this problem. The analytical method they have developed can simultaneously detect the two most critical impurities in biogas: sulfur compounds and siloxanes. They have now presented their method in the journal Progress in Energy. 

Featured Article

Microplastics pose a human health risk in more ways than one

Bio-beads collected near Truro. Photo Credit Beach Guardian A new study shows that microplastics in the natural environment are colonized by...

Top Viewed Articles