A newly developed molecule brings together two powerful immunotherapy strategies in one treatment. Researchers at the University of Basel and University Hospital Basel have demonstrated that this fusion protein can both block the “do not attack” signal used by cancer cells and selectively activate tumor-fighting immune cells. This dual action could pave the way for more effective cancer therapies with fewer side effects.
Back in the early 1980s, Linda Taylor, just 33 years old, was diagnosed with advanced skin cancer and faced a grim prognosis. Luckily, she met Dr. Stephen Rosenberg from the National Cancer Institute in Bethesda, Maryland, who treated her with an experimental approach harnessing the body’s own immune system to fight the disease. In 1984, Taylor became the first patient ever to be cured through immunotherapy – a groundbreaking case that forever changed the landscape of cancer treatment.
That pioneering therapy relied on interleukin-2 (IL-2), a signaling molecule that activates many types of immune cells to attack tumors. IL-2 later became the first immunotherapy approved by the U.S. Food and Drug Administration (FDA). However, while effective, IL-2 therapy often causes severe side effects and can also stimulate regulatory T cells, which dampen the immune response instead of boosting it.