. Scientific Frontline

Monday, December 1, 2025

New SwRI laboratory to study the origins of planetary systems

Southwest Research Institute (SwRI) has created a new space science laboratory, the Nebular Origins of the Universe Research (NOUR) Laboratory. Led by SwRI Senior Research Scientist Dr. Danna Qasim, the NOUR laboratory aims to bridge pre-planetary and planetary science to create a better understanding of the origins of our universe.
Photo Credit: Southwest Research Institute

The laboratory will trace the chemical origins of planetary systems. Qasim aims to establish a robust astrochemistry program within SwRI’s Space Science Division, connecting early cosmic chemistry to planetary evolution. The SwRI lab will give particular focus on the chemistry of interstellar clouds, vast regions of ice, gas and dust between stars representing a largely unexplored area of astrochemistry.

“We are examining the chemistry of ice, gas and dust that have existed since before our solar system formed, connecting the dots to determine how materials in those clouds ultimately evolve into planets,” Qasim said. “By simulating the physico-chemical conditions of these pre-planetary environments, we can fill key data gaps, providing insights that future NASA missions need to accomplish their goals.”

Bear teeth break free – Researchers discover the origin of unusual bear dentition

Lower jaw of a polar bear
The polar bear has a second molar that is only slightly larger than the first. Although the polar bear is a carnivore, it is descended from the omnivorous brown bear. 
Photo Credit: © Katja Henßel, SNSB

Mammalian teeth show an astonishing diversity that has developed over 225 million years. One approach to describing the development of mammalian teeth is the so-called “Inhibitory Cascade Model”, short ICM. The ICM describes the growth pattern of molars in the lower jaw. According to the model, the following applies to many mammals: The front molars in the lower jaw influence the growth of all the teeth behind them. 

Certain molecules inhibit or activate tooth growth in the animal's dentition according to the same pattern. Which molars become small or large depends on the size of the first molar, which depends on the animal's diet. In carnivorous mammals, the first molar is usually larger than the third. In herbivores, it is the other way around: the first molar is small, while the third is large. 

Medical Science: In-Depth Description

Image Credit: Scientific Frontline / AI generated

Medical Science is the comprehensive discipline responsible for the maintenance of health and the prevention, diagnosis, and treatment of disease. It encompasses a vast spectrum of knowledge, ranging from the molecular interactions of genetics and biochemistry to the complex physiological systems of the human body. The primary goal of medical science is to understand the etiology (cause) and pathogenesis (development) of illnesses to develop effective therapeutic interventions and public health strategies.

Untangling magnetism

Spin-wave spectrum of CoFe₂O₄ measured on the MAPS spectrometer (left) and the corresponding spin-wave calculation (right). The large ~60 meV splitting between the two magnon branches originates from the strong imbalance of molecular fields on the A and B cation sites, as illustrated in the inset crystal structure.
Image Credit: KyotoU / Yusuke Nambu

Magnetostriction and spin dynamics are fundamental properties of magnetic materials.  Despite having been studied for decades, finding a decisive link between the two in bulk single crystals had remained elusive. That is until a research team from several institutions, including Kyoto University, sought to examine these properties in the compound CoFe2O4, a spinel oxide (chemical formula AB2O4) widely used in numerous medical and industrial applications.

Spin dynamics describe how the tiny magnetic moments of atoms in a magnetic material interact and change orientation with time, while magnetostriction describes how a material changes shape or dimensions in response to a change in magnetization. These properties are central to the operation of sensors and actuators that employ magnetoelastic materials that change their magnetization under mechanical stress.

Scientists use algae to convert food waste into sustainable ingredients

C-phycocyanin
Photo Credit: King Abdullah University of Science and Technology

Researchers at King Abdullah University of Science and Technology (KAUST) have discovered something new about a very old organism and used it to transform waste from a chocolate factory into C-phycocyanin, a valuable blue pigment that is estimated to have a global market value of over US$275 million by 2030.  

The study, published in Trends in Biotechnology, outlines how Galdieria yellowstonensis, an ancient strain of red algae, can eat the sugars found in chocolate-processing waste to grow into a protein-rich biomass containing C-phycocyanin, which is used in food, cosmetics, and pharmaceutical products. Adding to the findings was the unexpected discovery that high levels of carbon dioxide promote Galdieria growth. Normally, carbon dioxide is a waste produced by microbes eating sugar. 

Smart sensor tag protects sensitive goods

Inconspicuous: The biodegradable tag is as thin as a sheet of paper, but still able to measure the temperature and relative humidity.
Photo Credit: Empa

Researchers from Empa, EPFL and CSEM have developed a green smart sensing tag that measures temperature and humidity in real time – and can also detect whether a temperature threshold has been exceeded. In the future, this could be used to monitor sensitive shipments such as medicines or food. The sensor tag itself is completely biodegradable. 

Vast flows of goods circle the globe every day. They include particularly delicate shipments, such as certain vaccines, medicines and food products. To ensure that these products arrive safely at their destination, they must remain within a certain temperature and humidity range throughout the entire supply chain. But how do we ensure this? It is costly and unsustainable to equip every single shipment with silicon-based sensors and chips. And measurements at nodes in the supply chain tell you nothing about what has already happened to the delicate goods on their way thus far. 

Congenital muscle weakness: Muscles fail to regenerate

After a muscle injury, muscle stem cells (green) secrete laminin-α2 (magenta) into their surroundings to support their proliferation.
Image Credit: Timothy McGowan, Biozentrum, University of Basel

For more than two decades, researchers at the University of Basel have been investigating a severe form of muscular dystrophy in which muscles progressively degenerate. The research team has now discovered that the muscles’ ability to regenerate is also impaired. Future therapies should therefore aim not only to strengthen muscles but also to promote their regeneration. 

Roughly eight in every million children are born with a particularly severe form of muscle weakness known as LAMA2-related muscular dystrophy. In Switzerland, 18 cases are currently known. This rare hereditary disease is still incurable. The muscles of affected children gradually become weaker, including the respiratory musculature. In many cases, children do not reach adulthood. 

Helium leak on the exoplanet WASP-107b

Artist's view of WASP-107b. The planet’s low density and the intense irradiation from its star allow helium to escape the planet and form an asymmetric extended and diffuse envelope around it.
Image Credit: © University of Geneva/NCCR PlanetS/Thibaut Roger

An international team including UNIGE observed with the JWST huge clouds of helium escaping from the exoplanet Wasp-107b. 

An international team, including astronomers from the University of Geneva (UNIGE) and the National Centre of Competence in Research PlanetS, has observed giant clouds of helium escaping from the exoplanet WASP-107b. Obtained with the James Webb Space Telescope, these observations were modeled using tools developed at UNIGE. Their analysis, published in the journal Nature Astronomy, provides valuable clues for understanding this atmospheric escape phenomenon, which influences the evolution of exoplanets and shapes some of their characteristics. 

Sometimes a planet’s atmosphere escapes into space. This is the case for Earth, which irreversibly loses a little over 3 kg of matter (mainly hydrogen) every second. This process, called ‘‘atmospheric escape’’, is of particular interest to astronomers for the study of exoplanets located very close to their star, which, heated to extreme temperatures, are precisely subject to this phenomenon. It plays a major role in their evolution. 

The shape of the cell nucleus influences the success of cancer treatment

Photo Credit: Thor Balkhed

Cancer cells with a cell nucleus that is easily deformed are more sensitive to drugs that damage DNA. These are the findings of a new study by researchers at Linköping University. The results may also explain why combining certain cancer drugs can produce the opposite of the intended effect. The study has been published in the journal Nature Communications

A few years ago, a new type of drug was introduced that exploits deficiencies in cancer cells’ ability to repair damage to their DNA. These drugs, called PARP1 inhibitors, are used against cancers that have mutations in genes involved in DNA repair, such as the breast cancer gene 1 (BRCA1). This gene has such a central role in the cell’s ability to repair serious DNA damage that mutations in it greatly increase the risk of developing cancer, often at a young age. The risk is so high that some women with a mutated BRCA1 gene choose to have their breasts and ovaries surgically removed to prevent cancer. 

Probiotics and Prebiotics Offer Safer Alternatives to Antibiotics in Animal Agriculture

Livestock producers face multiple challenges when adopting probiotics and prebiotics, from selecting effective microbial strains to ensuring product safety, viability, and cost efficiency.
Photo Credit: Joachim Süß

Probiotics, prebiotics, and synbiotics enhance livestock gut health, immunity, and growth while reducing dependence on antibiotics 

A new study by researchers at Shinshu University highlights the essential role of gut microbiota in livestock health and productivity. The researchers show how probiotics, prebiotics, and synbiotics can safely enhance growth and immunity, and balance the growth of intestinal microbes, offering practical alternatives to antibiotics. As global restrictions on antibiotic use intensify, the findings support sustainable livestock management and contribute to reducing antimicrobial resistance risks. 

Featured Article

Counting salmon is a breeze with airborne eDNA

A male Coho salmon, featuring the characteristic hooked nose, returns to spawn from the Oregon Coast. Photo Credit: NOAA Fisheries During th...

Top Viewed Articles