![]() |
| B-lymphoblastic leukemia, a type of blood cancer. Image Credit: Courtesy of the Rao Laboratory. |
Researchers at the UCLA Health Jonsson Comprehensive Cancer Center have identified a small molecule that can inhibit a cancer-driving protein long considered impossible to target with drugs — a discovery that could open the door to a new class of treatments for leukemia and other hard-to-treat cancers.
The compound, called I3IN-002, disrupts the ability of a protein known as IGF2BP3 to bind and stabilize cancer-promoting RNAs, a mechanism that fuels aggressive forms of acute leukemia. The study published in the journal Haematologica, found the molecule not only slowed leukemic cell growth but also triggered cancer cell death and reduced the population of leukemia-initiating cells that sustain the disease.
“This project has been more than a decade in the making,” said Dr. Dinesh Rao, professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA and senior author of the study. “We discovered IGF2BP3 years ago as an important driver in acute leukemias, and for a long time there were no tools to target it. To finally show that we can inhibit this protein and disrupt its function in cancer cells is incredibly exciting.”


.jpg)

.jpg)


.jpg)

.jpg)