. Scientific Frontline: Astronomy
Showing posts with label Astronomy. Show all posts
Showing posts with label Astronomy. Show all posts

Tuesday, February 20, 2024

The Radcliffe Wave is Waving

How the Radcliffe Wave moves through the backyard of our Sun (yellow dot). Blue dots are clusters of baby stars. The white line is a theoretical model by Ralf Konietzka and collaborators that explains the current shape and motion of the Wave. The magenta and green lines at the beginning show how and to what extent the Radcliffe Wave will move in the future. Background is a cartoon model of the Milky Way. 
Illustration Credit: Ralf Konietzka, Alyssa Goodman & WorldWide Telescope

CfA astronomers report oscillation of our giant, gaseous neighbor.

A few years ago, astronomers at the Center for Astrophysics | Harvard & Smithsonian (CfA) uncovered one of the Milky Way's greatest secrets: an enormous, wave-shaped chain of gaseous clouds in our sun’s backyard, giving birth to clusters of stars along the spiral arm of the galaxy we call home.

Naming this astonishing new structure the Radcliffe Wave, in honor of the Harvard Radcliffe Institute where the undulation was originally discovered, astronomers at CfA now report in Nature that the Radcliffe Wave not only looks like a wave, but also moves like one – oscillating through space much like "the wave" moving through a stadium full of fans.

"By using the motion of baby stars born in the gaseous clouds along the Radcliffe Wave," said Ralf Konietzka, the paper's lead author and a Ph.D. student at Harvard’s Kenneth C. Griffin Graduate School of Arts and Sciences and CfA, "we can trace the motion of their natal gas to show that the Radcliffe Wave is actually waving."

Scientists use Summit supercomputer to explore exotic stellar phenomena

Astrophysicists at the State University of New York, Stony Brook, and University of California, Berkeley created 3D simulations of X-ray bursts on the surfaces of neutron stars. Two views of these X-ray bursts are shown: the left column is viewed from above while the right column shows it from a shallow angle above the surface. The panels (from top to bottom) show the X-ray burst structure at 10 milliseconds, 20 milliseconds and 40 milliseconds of simulation time.
Image Credit: Michael Zingale/Department of Physics and Astronomy at SUNY Stony Brook.

Understanding how a thermonuclear flame spreads across the surface of a neutron star — and what that spreading can tell us about the relationship between the neutron star’s mass and its radius — can also reveal much about the star’s composition. 

Neutron stars — the compact remnants of supernova explosions — are found throughout the universe. Because most stars are in binary systems, it is possible for a neutron star to have a stellar companion. X-ray bursts occur when matter accretes on the surface of the neutron star from its companion and is compressed by the intense gravity of the neutron star, resulting in a thermonuclear explosion. 

Astrophysicists at the State University of New York, Stony Brook, and University of California, Berkeley, used the Oak Ridge Leadership Computing Facility’s Summit supercomputer, located at the Department of Energy’s Oak Ridge National Laboratory, to compare models of X-ray bursts in 2D and 3D. 

“We can see these events happen in finer detail with a simulation. One of the things we want to do is understand the properties of the neutron star because we want to understand how matter behaves at the extreme densities you would find in a neutron star,” said Michael Zingale, a professor in the Department of Physics and Astronomy at SUNY Stony Brook who led the project.

Monday, February 19, 2024

Astronomers identify record-breaking quasar

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. Using ESO’s Very Large Telescope (VLT) in Chile, this quasar has been found to be the most luminous object known in the Universe to date. The supermassive black hole, seen here pulling in surrounding matter, has a mass 17 billion times that of the Sun and is growing in mass by the equivalent of another Sun per day, making it the fastest-growing black hole ever known.
Illustration Credit: European Southern Observatory/M. Kornmesser

Using the European Southern Observatory’s (ESO) Very Large Telescope (VLT), astronomers have characterized a bright quasar, finding it to be not only the brightest of its kind, but also the most luminous object ever observed. Quasars are the bright cores of distant galaxies and they are powered by supermassive black holes. The black hole in this record-breaking quasar is growing in mass by the equivalent of one Sun per day, making it the fastest-growing black hole to date.

The black holes powering quasars collect matter from their surroundings in a process so energetic that it emits vast amounts of light. So much so that quasars are some of the brightest objects in our sky, meaning even distant ones are visible from Earth. As a general rule, the most luminous quasars indicate the fastest-growing supermassive black holes.

Thursday, February 15, 2024

SwRI scientists find evidence of geothermal activity within icy dwarf planets

Eris and Makemake
Image Credit: Courtesy of Southwest Research Institute

A team co-led by Southwest Research Institute found evidence for hydrothermal or metamorphic activity within the icy dwarf planets Eris and Makemake, located in the Kuiper Belt. Methane detected on their surfaces has the tell-tale signs of warm or even hot geochemistry in their rocky cores, which is markedly different than the signature of methane from a comet.

“We see some interesting signs of hot times in cool places,” said SwRI’s Dr. Christopher Glein, an expert in planetary geochemistry and lead author of a paper about this discovery. “I came into this project thinking that large Kuiper Belt objects (KBOs) should have ancient surfaces populated by materials inherited from the primordial solar nebula, as their cold surfaces can preserve volatiles like methane. Instead, the James Webb Space Telescope (JWST) gave us a surprise! We found evidence pointing to thermal processes producing methane from within Eris and Makemake.”

The Kuiper Belt is a vast donut-shaped region of icy bodies beyond the orbit of Neptune at the edge of the solar system. Eris and Makemake are comparable in size to Pluto and its moon Charon. These bodies likely formed early in the history of our solar system, about 4.5 billion years ago. Far from the heat of our Sun, KBOs were believed to be cold, dead objects. Newly published work from JWST studies made the first observations of isotopic molecules on the surfaces of Eris and Makemake. These so-called isotopologues are molecules that contain atoms having a different number of neutrons. They provide data that is useful in understanding planetary evolution.

Tuesday, February 13, 2024

Discovery of Unexpected Ultramassive Galaxies May Not Rewrite Cosmology, But Still Leaves Questions

Infrared view of the universe captured by the James Webb Space Telescope.
Image Credit: NASA, ESA, CSA and STScI.

Ever since the James Webb Space Telescope (JWST) captured its first glimpse of the early universe, astronomers have been surprised by the presence of what appear to be more “ultramassive” galaxies than expected. Based on the most widely accepted cosmological model, they should not have been able to evolve until much later in the history of the universe, spurring claims that the model needs to be changed.

This would upend decades of established science.

“The development of objects in the universe is hierarchical. You start small and get bigger and bigger,” said Julian Muñoz, an assistant professor of astronomy at The University of Texas at Austin and co-author of a recent paper that tests changes to the cosmological model. The study concludes that revising the standard cosmological model is not necessary. However, astronomers may have to revisit what they understand about how the first galaxies formed and evolved.

Cosmology studies the origin, evolution and structure of our universe, from the Big Bang to the present day. The most widely accepted model of cosmology is called the Lambda Cold Dark Matter (ΛCDM) model or the “standard cosmological model.” Although the model is very well informed, much about the early universe has remained theoretical because astronomers could not observe it completely, if at all.

Monday, February 12, 2024

SwRI Scientists Identify Water Molecules on Asteroids for the First Time

NASA’s Stratospheric Observatory for Infrared Astronomy
Image Credit: NASA/Carla Thomas/SwRI

Using data from the retired Stratospheric Observatory for Infrared Astronomy (SOFIA) — a joint project of NASA and the German Space Agency at DLR — Southwest Research Institute scientists have discovered, for the first time, water molecules on the surface of an asteroid. Scientists looked at four silicate-rich asteroids using the FORCAST instrument to isolate the mid-infrared spectral signatures indicative of molecular water on two of them.

“Asteroids are leftovers from the planetary formation process, so their compositions vary depending on where they formed in the solar nebula,” said SwRI’s Dr. Anicia Arredondo, lead author of a Planetary Science Journal paper about the discovery. “Of particular interest is the distribution of water on asteroids, because that can shed light on how water was delivered to Earth.”

Anhydrous, or dry, silicate asteroids form close to the Sun while icy materials coalesce farther out. Understanding the location of asteroids and their compositions tells us how materials in the solar nebula were distributed and have evolved since formation. The distribution of water in our solar system will provide insight into the distribution of water in other solar systems and, because water is necessary for all life on Earth, will drive where to look for potential life, both in our solar system and beyond.

Thursday, December 28, 2023

A carbon-lite atmosphere could be a sign of water and life on other terrestrial planets

In the search for extraterrestrial life, MIT scientists say a planet’s carbon-lite atmosphere, relative to its neighbors, could be a sure and detectable signal of habitability.
Image Credit: Scientific Frontline stock image.

Scientists at MIT, the University of Birmingham, and elsewhere say that astronomers’ best chance of finding liquid water, and even life on other planets, is to look for the absence, rather than the presence, of a chemical feature in their atmospheres.

The researchers propose that if a terrestrial planet has substantially less carbon dioxide in its atmosphere compared to other planets in the same system, it could be a sign of liquid water — and possibly life — on that planet’s surface.

What’s more, this new signature is within the sights of NASA’s James Webb Space Telescope (JWST). While scientists have proposed other signs of habitability, those features are challenging if not impossible to measure with current technologies. The team says this new signature, of relatively depleted carbon dioxide, is the only sign of habitability that is detectable now.

“The Holy Grail in exoplanet science is to look for habitable worlds, and the presence of life, but all the features that have been talked about so far have been beyond the reach of the newest observatories,” says Julien de Wit, assistant professor of planetary sciences at MIT. “Now we have a way to find out if there’s liquid water on another planet. And it’s something we can get to in the next few years.”

The team’s findings appear today in Nature Astronomy. De Wit co-led the study with Amaury Triaud of the University of Birmingham in the UK. Their MIT co-authors include Benjamin Rackham, Prajwal Niraula, Ana Glidden Oliver Jagoutz, Matej Peč, Janusz Petkowski, and Sara Seager, along with Frieder Klein at the Woods Hole Oceanographic Institution (WHOI), Martin Turbet of Ècole Polytechnique in France, and Franck Selsis of the Laboratoire d’astrophysique de Bordeaux.

Wednesday, December 20, 2023

Cosmic lights in the forest

TACC’s Frontera, the fastest academic supercomputer in the US, is a strategic national capability computing system funded by the National Science Foundation.
Photo Credit: TACC.

Like a celestial beacon, distant quasars make the brightest light in the universe. They emit more light than our entire Milky Way galaxy. The light comes from matter ripped apart as it is swallowed by a supermassive black hole. Quasar light reveals clues about the large-scale structure of the universe as it shines through enormous clouds of neutral hydrogen gas formed shortly after the Big Bang on the scale of 20 million light years across or more. 

Using quasar light data, the National Science Foundation (NSF)-funded Frontera supercomputer at the Texas Advanced Computing Center (TACC) helped astronomers develop PRIYA, the largest suite of hydrodynamic simulations yet made for simulating large-scale structure in the universe.

“We’ve created a new simulation model to compare data that exists at the real universe,” said Simeon Bird, an assistant professor in astronomy at the University of California, Riverside. 

Bird and colleagues developed PRIYA, which takes optical light data from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey (SDSS). He and colleagues published their work announcing PRIYA in the Journal of Cosmology and Astroparticle Physics (JCAP). 

Monday, December 18, 2023

Exoplanets' climate – it takes nothing to switch from habitable to hell

Runaway greenhouse effect can transform a temperate habitable planet with surface liquid water ocean into a hot steam dominated planet hostile to any life
Image Credit: (Chaverot et al., 2023). © Thibaut Roger / UNIGE

The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers from the University of Geneva (UNIGE), with the support of the CNRS laboratories of Paris and Bordeaux, has achieved a world’s first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from the initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun’s luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable. These results are published in Astronomy & Astrophysics.

Thursday, December 14, 2023

Long-sought binary star population found! Discovery could answer questions about hydrogen-poor supernova origins

An artist’s conception of the hydrogen being stripped from one half of a binary system, leaving a very hot, helium rich exposed core that will eventually explode as a hydrogen-poor core collapse supernova.
 Illustration Credit: Navid Marvi, courtesy of the Carnegie Institution for Science.

A team of astronomers has found a long- “missing” population of stars that could answer long-standing questions about the origins of a mysterious type of supernova. Their discovery, published in Science, could help researchers understand how hydrogen-poor core-collapse supernovae and neutron star collisions occur—major stellar events that are the source of many of the elements on the periodic table.

The project’s leaders, the University of Toronto’s Maria Drout and the Institute of Science and Technology Austria’s Ylva Götberg, met as junior researchers, and both went on to complete postdoctoral positions at the Carnegie Observatories—where the majority of this work was done—and have since moved onto assistant professor positions at their respective institutions.

Supernovae are violent stellar explosions that spew material into their cosmic surroundings, seeding the next generation of stars. But astronomers are still working to elucidate how they originate and what their various stellar progenitors look like—which differ between types of supernovae.

Drout and Götberg were particularly interested in one type of supernovae that stands out from their celestial peers for being hydrogen poor.

Monday, December 11, 2023

Researchers stunned by Webb’s new high-definition look at exploded star

A roughly circular cloud of gas and dust with complex structure. The inner shell is made of bright pink and orange filaments studded with clumps and knots that look like tiny pieces of shattered glass. Around the exterior of the inner shell, there are curtains of wispy gas that look like campfire smoke. Around and within the nebula, various stars are seen as points of blue and white light. Outside the nebula, there are also clumps of dust, colored yellow in the image
Hi-Res Zoomable Image
Source/Credit: NASA, ESA, CSA, STScI, D. Milisavljevic (Purdue University), T. Temim (Princeton University), I. De Looze (University of Gent)

Like a shiny, round ornament ready to be placed in the perfect spot on the holiday tree, supernova remnant Cassiopeia A (Cas A) gleams in a new image from the NASA/ESA/CSA James Webb Space Telescope. However, this scene is no proverbial silent night — all is not calm.

Webb’s NIRCam (Near-Infrared Camera) view of Cas A displays a very violent explosion at a resolution previously unreachable at these wavelengths. This high-resolution look unveils intricate details of the expanding shell of material slamming into the gas shed by the star before it exploded.

Cas A is one of the best-studied supernova remnants in all the cosmos. Over the years, ground-based and space-based observatories, including the NASA/ESA Hubble Space Telescope, have collectively assembled a multiwavelength picture of the object’s tattered remains.

However, astronomers have now entered a new era in the study of Cas A. In April 2023, Webb’s MIRI (Mid-Infrared Instrument) started this story, revealing new and unexpected features within the inner shell of the supernova remnant. But many of those features are invisible in the new NIRCam image, and astronomers are investigating why that is.

Tuesday, November 7, 2023

SwRI-led Lucy observes first-ever contact binary orbiting an asteroid

This image shows the asteroid Dinkinesh and its satellite as seen by the Lucy Long-Range Reconnaissance Imager (LORRI). As NASA's Lucy Spacecraft departed the system, the SwRI-led Lucy team captured this image at 1 p.m. EDT (1700 UTC) Nov. 1, 2023, about six minutes after closest approach. From a range of approximately 1,010 miles (1,630 km), the satellite is revealed to be a contact binary, the first time such an object has been seen orbiting another asteroid.
Image Credit: NASA/Goddard/SwRI/Johns Hopkins APL

After the Southwest Research Institute-led Lucy mission flew past the asteroid Dinkinesh, the team discovered that it is even more “marvelous” as its newly discovered satellite is now shown to be a double-lobed moonlet. As NASA’s Lucy spacecraft continued to return data acquired during its first asteroid encounter on Nov. 1, 2023, the team discovered that Dinkinesh’s surprise satellite is itself a contact binary, made of two smaller objects touching each other.

In the first image of Dinkinesh and its satellite taken at closest approach, the two lobes of the contact binary lined up, one behind the other, appearing to be one body from Lucy’s point of view. When the team downlinked additional images captured after the closest encounter, the data revealed that Dinkenesh has a double moonlet.

“Contact binaries seem to be fairly common in the solar system,” said John Spencer, Lucy deputy project scientist, of the Boulder, Colorado, branch of the San Antonio-based SwRI. “We haven’t seen many up close, and we’ve never seen one orbiting another asteroid. We’d been puzzling over odd variations in Dinkinesh’s brightness that we saw on approach, which gave us a hint that Dinkinesh might have a moon of some sort, but we never suspected anything so bizarre!”

Monday, November 6, 2023

Mystery Resolved: Black Hole Feeding and Feedback at the Center of an Active Galaxy

Fig. 1
An illustration depicting the distribution of interstellar medium in the active galactic nucleus based on the results of this observation.
Illustration Credit: ©ALMA (ESO/NAOJ/NRAO), T. Izumi et al.

An international research team led by Takuma Izumi, an assistant professor at the National Astronomical Observatory of Japan, has observed in high resolution (approximately 1 light year) the active galactic nucleus of the Circinus Galaxy - one of the closest major galaxies to the Milky Way. The observation was made possible by the Atacama Large Millimeter/Submillimeter Array (ALMA) astronomical observatory in Chile.

This breakthrough marks the world's first quantitative measurement at this scale of gas flows and their structures of a nearby supermassive black hole in all phase gases, including plasma, atomic, and molecular. Such high resolution allowed the team to team to capture the accretion flow heading towards the supermassive black hole, revealing that this accretion flow is generated by a physical mechanism known as 'gravitational instability.' Furthermore, the team also found that a significant portion of this accretion flow does not contribute to the growth of the black hole. Instead, most of the gas is expelled from the vicinity of the black hole as atomic or molecular outflows, and returns to the gas disk to participate again into an accretion flow towards the black hole, much like how water gets recycled in a water fountain. These findings represent a crucial advancement towards a greater understanding of the growth mechanisms of supermassive black holes.

Thursday, November 2, 2023

Jurassic worlds might be easier to spot than modern Earth

Modeling by Cornell astronomers finds that telescopes could more easily detect an exoplanet with higher levels of atmospheric oxygen than modern Earth, as existed during the dinosaur age.
Illustration Credit: Rebecca Payne/Carl Sagan Institute

Might a tyrannosaur roam on Trappist-1e, a protoceratops on Proxima Centauri b, or a quetzalcoatlus on Kepler 1047c?

Things may not have ended well for dinosaurs on Earth, but Cornell astronomers say the “light fingerprint” of the conditions that enabled them to emerge here – including abundant atmospheric oxygen – provides a crucial missing piece in our search for signs of life on planets orbiting other stars.

Modeling by Cornell astronomers finds that telescopes could more easily detect an exoplanet with higher levels of atmospheric oxygen than modern Earth, as existed during the dinosaur age.

Their analysis of the most recent 540 million years of Earth’s evolution, known as the Phanerozoic Eon, finds that telescopes could better detect potential chemical signatures of life in the atmosphere of an Earth-like exoplanet more closely resembling the age the dinosaurs inhabited than the one we know today.

Two key biosignature pairs – oxygen and methane, and ozone and methane – appeared stronger in models of Earth roughly 100 million to 300 million years ago, when oxygen levels were significantly higher. The models simulated the transmission spectra, or light fingerprint, generated by an atmosphere that absorbs some colors of starlight and lets others filter through, information scientists use to determine the atmosphere’s composition.

Tuesday, October 31, 2023

Giant planets cast a deadly pall

Artist's depiction of a star system that is crowded with giant planets.
Illustration Credit: NASA/Dana Berry

Giant gas planets can be agents of chaos, ensuring nothing lives on their Earth-like neighbors around other stars. New studies show, in some planetary systems, the giants tend to kick smaller planets out of orbit and wreak havoc on their climates. 

Jupiter, by far the biggest planet in our solar system, plays an important protective role. Its enormous gravitational field deflects comets and asteroids that might otherwise hit Earth, helping create a stable environment for life. However, giant planets elsewhere in the universe do not necessarily protect life on their smaller, rocky planet neighbors. 

A new Astronomical Journal paper details how the pull of massive planets in a nearby star system are likely to toss their Earth-like neighbors out of the “habitable zone.” This zone is defined as the range of distances from a star that is warm enough for liquid water to exist on a planet’s surface, making life possible.

Unlike most other known solar systems, the four giant planets in HD 141399 are farther from their star. This makes it a good model for comparison with our solar system where Jupiter and Saturn are also relatively far from the sun.  

“It’s as if they have four Jupiters acting like wrecking balls, throwing everything out of whack,” said Stephen Kane, UC Riverside astrophysicist and author of the journal paper. 

Friday, October 27, 2023

Sheffield astronomers help to confirm heaviest elements in the Universe are formed in kilonovae

The Gamma-Ray Burst (GRB) 230307A and its associated kilonova explosion.
Image Credit: NASA, ESA, CSA, STScI, A. Levan (Radboud University and University of Warwick)

Astrophysicists are one step closer to understanding how the heaviest chemical elements are created in the universe, thanks to a camera designed and built at the University of Sheffield.

Scientists from the Astrophysics Group at the University of Sheffield observed the merger of two dense neutron stars, known as a kilonova, in a spiral galaxy a billion light years away

The discovery of the kilonova, only the second one to be observed, was made possible thanks to observations with the University of Sheffield’s camera ULTRACAM mounted on the New Technology Telescope at the European Southern Observatory in Chile

Kilonovae are important because their explosions are believed to form the heaviest elements in the periodic table, including most of the gold, platinum and uranium found on Earth

Astrophysicists are one step closer to understanding how the heaviest chemical elements are created in the universe, thanks to a camera designed and built at the University of Sheffield.

Thursday, October 26, 2023

Venus had Earth-like plate tectonics billions of years ago

Photo Credit: NASA/JPL

A new study found that Venus, a scorching wasteland of a planet according to scientists, may have once had tectonic plate movements similar to those believed to have occurred on early Earth, a new study found. The finding sets up tantalizing scenarios regarding the possibility of early life on Venus, its evolutionary past and the history of the solar system.

Writing in Nature Astronomy, a team of scientists led by Brown University researchers describes using atmospheric data from Venus and computer modeling to show that the composition of the planet’s current atmosphere and surface pressure would only have been possible as a result of an early form of plate tectonics, a process critical to life that involves multiple continental plates pushing, pulling and sliding beneath one another.

On Earth, this process intensified over billions of years, forming new continents and mountains, and leading to chemical reactions that stabilized the planet’s surface temperature, resulting in an environment more conducive to the development of life.

Deep learning speeds up galactic calculations

A more efficient simulation.
During a supernova simulation, (left) shows the prediction by a current simulation method. (right) shows the prediction by 3D-MIM, which looks close enough to the that of the current leading method, but it takes far less time to execute, saving time, energy and costs for computing time.
Image Credit: ©2023 Hirashima et al.

Supernovae, exploding stars, play a critical role in the formation and evolution of galaxies. However, key aspects of them are notoriously difficult to simulate accurately in reasonably short amounts of time. For the first time, a team of researchers, including those from The University of Tokyo, apply deep learning to the problem of supernova simulation. Their approach can speed up the simulation of supernovae, and therefore of galaxy formation and evolution as well. These simulations include the evolution of the chemistry which led to life.

When you hear about deep learning, you might think of the latest app that sprung up this week to do something clever with images or generate humanlike text. Deep learning might be responsible for some behind-the-scenes aspects of such things, but it’s also used extensively in different fields of research. Recently, a team at a tech event called a hackathon applied deep learning to weather forecasting. It proved quite effective, and this got doctoral student Keiya Hirashima from the University of Tokyo’s Department of Astronomy thinking.

Thursday, October 19, 2023

Astronomers detect most distant fast radio burst to date

This artist’s impression (not to scale) illustrates the path of the fast radio burst FRB 20220610A, from the distant galaxy where it originated all the way to Earth, in one of the Milky Way’s spiral arms. The source galaxy of FRB 20220610A, pinned down thanks to ESO’s Very Large Telescope, appears to be located within a small group of interacting galaxies. It’s so far away its light took eight billion years to reach us, making FRB 20220610A the most distant fast radio burst found to date. 
Full Size Image
Credit: ESO/M. Kornmesser

An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This 'fast radio burst' (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun’s total emission over 30 years.

The discovery of the burst, named FRB 20220610A, was made in June last year by the ASKAP radio telescope in Australia and it smashed the team’s previous distance record by 50 percent.

“Using ASKAP’s array of dishes, we were able to determine precisely where the burst came from,” says Stuart Ryder, an astronomer from Macquarie University in Australia and the co-lead author of the study published today in Science. “Then we used [ESO’s VLT] in Chile to search for the source galaxy, finding it to be older and further away than any other FRB source found to date and likely within a small group of merging galaxies.”

Wednesday, October 18, 2023

New patterns in Sun’s layers could help scientists solve solar mystery

In this image, the fine-structure of the quiet Sun is observed at its surface or photosphere.
Image Credit: NSF/AURA/NSO

Astronomers are one step closer to understanding one of the most enduring solar mysteries, having captured unprecedented data from the Sun’s magnetic field.

New research from an international team may explain one of the biggest conundrums in astrophysics – why the outermost layer of the Sun’s atmosphere is hotter than the surface

Groundbreaking data collected from the world's most powerful solar telescopes shows a snake-like pattern in the Sun’s magnetic fields that could contribute to the heating of the Sun’s outermost atmosphere

The project, which includes scientists across a wide range of institutions on both sides of the Atlantic Ocean, has opened new avenues in solar physics

Astronomers are one step closer to understanding one of the most enduring solar mysteries, having captured unprecedented data from the Sun’s magnetic field.

Featured Article

Scientists help discover new treatment for many cancers

UniSA/CCB Professor Greg Goodall, part of the team that made the landmark discovery. Photo Credit: Courtesy of University of South Australia...

Top Viewed Articles