. Scientific Frontline: Engineering
Showing posts with label Engineering. Show all posts
Showing posts with label Engineering. Show all posts

Saturday, January 31, 2026

Cracking complex networks with partial data

Given that more than 20 internal signals drive the behavior of a single neuron, measuring all of them is close to impossible. Jr-Shin Li’s lab and explored an alternative: What if we could measure only one signal per node?
Image Credit: Scientific Frontline / stock image

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: A computational framework capable of reconstructing the connectivity of massive, complex networks by measuring only a single data signal from each node, rather than tracking every internal variable.

Key Distinction/Mechanism: Unlike ideal scenarios requiring comprehensive data for every network component, NIPS employs a mathematical instrument called "forced time-delay embedding." This allows researchers to model a node's future behavior based on its past values and treat signals from other nodes as external inputs to infer connectivity.

Origin/History: Developed by researchers in Jr-Shin Li’s lab at Washington University in St. Louis and published in PNAS Nexus in January 2026.

Major Frameworks/Components:

  • Network Inference from Partial States (NIPS): The overarching framework for reconstructing network architecture from limited data.
  • Forced Time-Delay Embedding: The mathematical technique used to extract dynamic information from a single variable's history.
  • Single-Variable Measurement: The methodological shift from full-state observation to partial-state observation.

Branch of Science: Systems Science, Network Science, and Electrical Engineering.

Future Application:

  • Infrastructure: Pinpointing broken links in power grids by analyzing generator frequency data during disruptions.
  • Healthcare: Mapping neuron connectivity to study circadian rhythms and diagnose sleep disorders.

Thursday, January 29, 2026

Engineers design structures that compute with heat

This artistic rendering shows a thermal analog computing device, which performs computations using excess heat, embedded in a microelectronic system.
Image Credit: Jose-Luis Olivares, MIT
(CC BY-NC-ND 4.0)

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers have developed microscopic silicon structures capable of performing analog computations by utilizing waste heat instead of electricity.
  • Methodology: The team employed an "inverse design" software system to iteratively optimize the geometry and porosity of silicon metastructures, enabling them to conduct and diffuse heat in specific patterns that represent mathematical operations.
  • Key Data: The thermal computing structures achieved over 99 percent accuracy in performing matrix-vector multiplications, a fundamental calculation for machine learning models.
  • Significance: This paradigm shifts heat from a problematic waste product to a functional information carrier, potentially allowing for energy-free thermal sensing and signal processing within microelectronics.
  • Future Application: Beyond thermal management, the technology is envisioned for use in sequential machine learning operations and programmable thermal structures that can detect localized heat gradients without digital components.
  • Branch of Science: Mechanical Engineering, Applied Physics, and Computer Science.
  • Additional Detail: To handle negative numerical values—which heat conduction cannot naturally represent—the researchers developed a method to split matrices into positive and negative components, optimizing separate structures for each.

Thursday, January 15, 2026

Efficient cooling method could enable chip-based quantum computers

Caption:Researchers developed a photonic chip that incorporates precisely designed antennas to manipulate beams of tightly focused, intersecting light, which can rapidly cool a quantum computing system to someday enable greater efficiency and stability.
Illustration Credit: Michael Hurley and Sampson Wilcox
(CC BY-NC-ND 4.0)

Scientific Frontline: "At a Glance" Summary

  • Core Discovery: Researchers successfully demonstrated a high-efficiency polarization-gradient cooling method integrated directly onto a photonic chip, enabling faster and more effective cooling for trapped-ion quantum computers.
  • Methodology: The system utilizes precisely designed nanoscale antennas connected by waveguides to emit intersecting light beams with diverse polarizations; this creates a rotating light vortex that drastically reduces the kinetic energy of trapped ions.
  • Key Data: The approach achieved ion cooling temperatures nearly 10 times below the standard Doppler limit, reaching this state in approximately 100 microseconds—several times faster than comparable techniques.
  • Context: Unlike traditional quantum setups that rely on bulky external lasers and are sensitive to vibrations, this integrated architecture generates stable optical fields directly on the chip, eliminating the need for complex external optical alignment.
  • Significance: This advancement validates a scalable path for quantum computing where thousands of ion-interface sites can coexist on a single chip, significantly improving the stability and practicality of quantum information processing.
  • Specific Mechanism: The on-chip antennas feature specialized curved notches designed to scatter light upward, maximizing the optical interaction with the ion and allowing for advanced operations beyond simple cooling.

Wednesday, January 14, 2026

A Robot Learns to Lip Sync


Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Columbia Engineering researchers developed a robot that autonomously learns to lip-sync to speech and song through observational learning, bypassing traditional rule-based programming.
  • Methodology: The system utilizes a "vision-to-action" language model (VLA) where the robot first maps its own facial mechanics by watching its reflection, then correlates these movements with human lip dynamics observed in YouTube videos.
  • Specific Detail/Mechanism: The robot features a flexible silicone skin driven by 26 independent motors, allowing it to translate audio signals directly into motor actions without explicit instruction on phoneme shapes.
  • Key Statistic or Data: The robot successfully articulated words in multiple languages and performed songs from an AI-generated album, utilizing training data from thousands of random facial expressions and hours of human video footage.
  • Context or Comparison: Unlike standard humanoids that use rigid, pre-defined facial choreographies, this data-driven approach aims to resolve the "Uncanny Valley" effect by generating fluid, human-like motion.
  • Significance/Future Application: This technology addresses the "missing link" of facial affect in robotics, a critical component for effectively deploying humanoid robots in social roles such as elder care, education, and service industries.

Self-Healing Composite Can Make Airplane, Automobile and Spacecraft Components Last for Centuries

3D printed thermoplastic healing agent (blue overlay) on glass-fiber reinforcement (left); infrared thermograph during in situ self-healing of a fractured fiber-composite (middle); 3D printed healing agent (blue) on carbon-fiber reinforcement (right).
Image Credit: Jason Patrick, NC State University.

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers developed a self-healing fiber-reinforced polymer (FRP) composite capable of enduring more than 1,000 autonomous repair cycles, offering a potential solution to the persistent problem of delamination.
  • Mechanism: The system utilizes a thermoplastic healing agent (poly(ethylene-co-methacrylic acid)) 3D-printed onto fiber reinforcements, which is activated by embedded carbon-based heater layers to melt and re-bond cracks.
  • Key Data: Experimental testing verified 1,000 fracture-and-heal cycles, with fracture resistance starting at 175% of standard non-healing composites and maintaining approximately 60% strength after extensive cycling.
  • Context: Predictive modeling estimates the material could last 125 years with quarterly healing or up to 500 years with annual healing, vastly exceeding the typical 15–40 year lifespan of current FRPs.
  • Significance: This technology is positioned to drastically reduce maintenance costs and waste in aerospace and renewable energy sectors, particularly for spacecraft and wind turbines where manual repair is difficult or impossible.
  • Critical Detail: The gradual decline in healing efficacy is attributed to the accumulation of brittle fiber micro-debris and waning chemical reactions at the interface, though performance remains statistically viable for century-scale use.

Monday, January 5, 2026

Cleaning Up the Final Frontier: Embry‑Riddle Researchers Develop Net Mechanism to Catch Space Debris

Embry‑Riddle’s Dr. Morad Nazari, graduate student Sahasra Boyapati and Dr. Daewon Kim (from right to left) display prototype components of their space debris removal system.
Photo Credit: Embry‑Riddle/Daryl LaBello

With damaging strikes by accumulating space debris a serious threat to space missions and exploration, Embry‑Riddle researchers are developing a mechanism that can snag the debris with nets and tow it toward Earth’s atmosphere to burn up on reentry.

“What's most exciting about this project is that it offers a practical and elegant way to clean up space,” said Dr. Daewon Kim, professor of Aerospace Engineering. “It's a simple idea powered by advanced engineering, turning the vision of catching and removing space junk into something real and achievable.”

Tuesday, December 23, 2025

Ultra-high-resolution Lidar Reveals Hidden Cloud Structures

This experimental setup at Michigan Technological University allows researchers to create and study clouds under carefully controlled conditions. Researchers from Brookhaven National Laboratory used it to demonstrate the capabilities of a new ultra-high-resolution lidar, a laser-based remote sensing instrument for studying cloud properties.
Photo Credit: Michigan Technological University

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators have developed a new type of lidar — a laser-based remote-sensing instrument — that can observe cloud structures at the scale of a single centimeter. The scientists used this high-resolution lidar to directly observe fine cloud structures in the uppermost portion of laboratory-generated clouds. This capability for studying cloud tops with resolution that is 100 to 1,000 times higher than traditional atmospheric science lidars enables pairing with measurements in well-controlled chamber experiments in a way that has not been possible before.

The results, published in the Proceedings of the National Academy of Sciences, provide some of the first experimental data showing of how cloud droplet properties near the tops of clouds differ from those in the cloud interior. These differences are crucial to understanding how clouds evolve, form precipitation, and affect Earth’s energy balance.

“This is the first time we’ve been able to see these cloud-top microstructures directly and non-invasively,” said Fan Yang, an atmospheric scientist at Brookhaven Lab and the lead author of the study. “These structures occur on scales smaller than those used in most atmospheric models, yet they can strongly affect cloud brightness and how likely clouds are to produce rain.”

Tuesday, December 16, 2025

Membrane magic: Researchers repurpose fuel cells membranes for new applications

Daniel Hallinan Jr. works with perfluorosulfonic acid (PFSA) polymers in his lab in the Aero-Propulsion Mechatronics & Energy building at the FAMU-FSU College of Engineering.
Photo Credit: Scott Holstein/FAMU-FSU College of Engineering

FAMU-FSU College of Engineering researchers are applying fuel cell technology to new applications like sustainable energy and water treatment.

In a study published in Frontiers in Membrane Science and Technology, the researchers examined a type of membrane called a perfluorosulfonic acid polymer membrane, or PFSA polymer membrane. These membranes act as filters, allowing protons to move through, but blocking electrons and gases.

In the study, the researchers examined how boiling these membranes — a common treatment applied to the material — affects their performance and helps them work as specialized tools for different applications.

Monday, December 1, 2025

New SwRI laboratory to study the origins of planetary systems

Southwest Research Institute (SwRI) has created a new space science laboratory, the Nebular Origins of the Universe Research (NOUR) Laboratory. Led by SwRI Senior Research Scientist Dr. Danna Qasim, the NOUR laboratory aims to bridge pre-planetary and planetary science to create a better understanding of the origins of our universe.
Photo Credit: Southwest Research Institute

The laboratory will trace the chemical origins of planetary systems. Qasim aims to establish a robust astrochemistry program within SwRI’s Space Science Division, connecting early cosmic chemistry to planetary evolution. The SwRI lab will give particular focus on the chemistry of interstellar clouds, vast regions of ice, gas and dust between stars representing a largely unexplored area of astrochemistry.

“We are examining the chemistry of ice, gas and dust that have existed since before our solar system formed, connecting the dots to determine how materials in those clouds ultimately evolve into planets,” Qasim said. “By simulating the physico-chemical conditions of these pre-planetary environments, we can fill key data gaps, providing insights that future NASA missions need to accomplish their goals.”

Friday, November 21, 2025

Rice engineers show lab grown diamond films can stop costly mineral buildup in pipes

Pulickel Ajayan and Xiang Zhang
Photo Credit: Jeff Fitlow/Rice University

In industrial pipes, mineral deposits build up the way limescale collects inside a kettle ⎯ only on a far larger and more expensive scale. Mineral scaling is a major issue in water and energy systems, where it slows flow, strains equipment and drives up costs.

A new study by Rice University engineers shows that lab-grown diamond coatings could resolve the issue, providing an alternative to chemical additives and mechanical cleaning, both of which offer only temporary relief and carry environmental or operational downsides.

“Because of these limitations, there is growing interest in materials that can naturally resist scale formation without constant intervention,” said Xiang Zhang, assistant research professor of materials science and nanoengineering and a first author on the study alongside Rice postdoctoral researcher Yifan Zhu. “Our work addresses this urgent need by identifying a coating material that can ‘stay clean’ on its own.”

Thursday, November 20, 2025

Innovation turns building vents into carbon-capture devices

A carbon nanofiber-based direct air capture filter developed by the University of Chicago Pritzker School of Molecular Engineering could turn existing building ventilation systems into carbon-capture devices while cutting homeowners’ energy costs. Through life cycle assessment, the air filter shows a carbon removal efficiency of 92.1% from cradle to grave.
Photo Credit: Elaina Eichorn

With a newly developed nanofiber filter, air conditioners, heaters and other HVAC systems could remove airborne carbon dioxide while cutting energy costs

A nanofiber air filter developed at the University of Chicago could turn existing building ventilation into carbon-capture devices while cutting homeowners’ energy costs.

In a paper recently published in Science Advances, researchers from the lab of Asst. Prof. Po-Chun Hsu in the Pritzker School of Molecular Engineering (UChicago PME) developed a distributed carbon nanofiber direct air capture filter that could potentially turn every home, office, school or other building into a small system working toward the global problem of airborne carbon dioxide.

A life-cycle analysis shows that—even after factoring this extra CO2 released by everything from manufacture and transportation to maintenance and disposal—the new filter is more than 92% efficient in removing the gas from the air.

Monday, November 17, 2025

SwRI turbocharges its hydrogen-fueled internal combustion engine

SwRI has a multidisciplinary team dedicated to Hydrogen Energy Research initiatives to deploy decarbonization technologies across a broad spectrum of industries. In 2022, SwRI began modifying a heavy-duty natural gas-fueled engine to run on 100% hydrogen fuel, successfully demonstrated in 2024. SwRI continues to research, design and innovate on H2-ICE technology. 
Photo Credit: Southwest Research Institute

Southwest Research Institute (SwRI) has upgraded its hydrogen-powered heavy-duty internal combustion engine (H2-ICE) with a state-of-the-art turbocharger. The upgrades have significantly improved performance across the board, making the engine competitive with current long-haul diesel engines focused on fuel economy while maintaining near-zero tailpipe emissions.

In 2023, SwRI converted a traditional natural gas-fueled internal combustion engine to run solely on hydrogen fuel with minimal modifications. It was integrated into a Class-8 truck as part of the Institute’s H2-ICE project to demonstrate a cost-efficient hydrogen-fueled engine as an option for zero-tailpipe carbon dioxide heavy-duty transportation.

Engineering: In-Depth Description

Photo Credit: ThisisEngineering

Engineering is the application of scientific principles, mathematical knowledge, economic considerations, and practical experience to invent, design, build, maintain, and improve structures, machines, tools, systems, components, materials, and processes. The primary goal of engineering is to solve practical human problems safely, efficiently, and effectively.

TU Dresden Develops Laser Drill to Explore Icy Moons

Researchers from TU Dresden during field tests of the laser ice drill on a glacier in Austria
Photo Credit: Technische Universitat Dresden

Researchers at the Institute of Aerospace Engineering at TU Dresden have developed a laser-based ice drilling system that could help to penetrate the kilometer-thick layers of ice on celestial bodies such as Jupiter's moon Europa or Saturn's Enceladus in the future. In this way, underground oceans and possible traces of past life could be investigated in a targeted manner. Initial laboratory and field tests on glaciers in the Alps and the Arctic have shown that snow and ice density can be reliably measured.

Monday, November 10, 2025

The Two Sides of Flood Protection

Flood waters in Rosenheim, Deutschland
Photo Credit: Julian Schneiderath

Climate change is leading to stronger flood disasters. TU Wien and Joanneum Research have developed a new model that shows how private and public protection measures interact.

In many regions of the world, people will have to prepare for more severe flood events in the coming decades. There are two ways to tackle this problem: individuals can protect themselves – for example, through insurance or home modifications – or communities can work together to reduce flood risks, for instance by building dams or retention basins.

The interaction between these approaches can be represented in mathematical models. A research team led by TU Wien used extensive data, that had surveyed thousands of Austrian households to study how natural conditions and human behavior interact in flood protection. Minimizing flood damage requires both approaches – individual and public.

How plastics grip metals at the atomic scale

Hierarchical view of polymer–alumina direct bonding across multiple length scales.
Image Credit: Osaka Metropolitan University

What makes some plastics stick to metal without any glue? Osaka Metropolitan University scientists peered into the invisible adhesive zone that forms between certain plastics and metals — one atom at a time — to uncover how chemistry and molecular structure determine whether such bonds bend or break.

Their insights clarify metal–plastic bonding mechanisms and offer guidelines for designing durable, lightweight, and more sustainable hybrid materials for use in transportation.

Combining the strength of metal with the lightness and flexibility of plastic, polymer–metal hybrid structures are emerging as key elements for building lighter, more fuel-efficient vehicles. The technology relies on bonding metals with plastics directly, without adhesives. The success of these hybrids, however, hinges on how well the two materials stick together.

Wednesday, November 5, 2025

Prime time for fiber optics to take a deep dive into brain circuits

Fiber-optic technology is being refined for brain research. WashU engineers have developed a way to vastly expand the utility of a single fiber-optic line that can fit in the brain.
Image Credit: JJ Ying

Fiber-optic technology revolutionized the telecommunications industry and may soon do the same for brain research.

A group of researchers from Washington University in St. Louis in both the McKelvey School of Engineering and the School of Medicine have created a new kind of fiber-optic device to manipulate neural activity deep in the brain. The device, called PRIME (Panoramically Reconfigurable IlluMinativE) fiber, delivers multi-site, reconfigurable optical stimulation through a single, hair-thin implant.

“By combining fiber-based techniques with optogenetics, we can achieve deep-brain stimulation at unprecedented scale,” said Song Hu, professor of biomedical engineering, who collaborated with the laboratory of Adam Kepecs, professor of neuroscience and psychiatry at WashU Medicine. 

Wednesday, October 22, 2025

New observation method improves outlook for lithium metal battery

Stacey Bent (left), professor of chemical engineering and of energy science and engineering, Sanzeeda Baig Shuchi (right), chemical engineering PhD student, and Yi Cui (not pictured), professor of materials science and engineering and of energy science and engineering, led the research team that discovered a way to more accurately analyze key chemistries for rechargeable batteries and possibly many other chemistry applications.
Photo Credit: Bill Rivard

Stanford researchers developed a flash-freezing observation method that reveals battery chemistry without altering it, providing new insights to enhance lithium metal batteries.

In science and everyday life, the act of observing or measuring something sometimes changes the thing being observed or measured. You may have experienced this “observer effect” when you measured the pressure of a tire and some air escaped, changing the tire pressure. In investigations of materials involved in critical chemical reactions, scientists can hit the materials with an X-ray beam to reveal details about composition and activity, but that measurement can cause chemical reactions that change the materials. Such changes may have significantly hampered scientists learning how to improve – among many other things – rechargeable batteries.

To address this, Stanford University researchers have developed a new twist to an X-ray technique. They applied their new approach by observing key battery chemistries, and it left the observed battery materials unchanged and did not introduce additional chemical reactions. In doing so, they have advanced knowledge for developing rechargeable lithium metal batteries. This type of battery packs a lot of energy and can be recharged very quickly, but it short-circuits and fails after recharging a handful of times. The new study, published today in Nature, also could advance the understanding of other types of batteries and many materials unrelated to batteries.

Friday, October 17, 2025

How origami robots with magnetic muscles could make medicine delivery less invasive and more effective

A crawling robot created with the Miura-Ori origami pattern. The dark areas are covered in a thin magnetic rubber film which allows the robot to move.
Photo Credit: Courtesy of North Carolina State University

A new 3-D printing technique can create paper-thin “magnetic muscles,” which can be applied to origami structures to make them move.

By infusing rubber-like elastomers with materials called ferromagnetic particles, researchers at North Carolina State University 3-D printed a thin magnetic film which can be applied to origami structures. When exposed to magnetism, the films acted as actuators which caused the system to move, without interfering with the origami structure’s motion.

"This type of soft magnet is unique in how little space it takes up," said Xiaomeng Fang, assistant professor in the Wilson College of Textiles and lead author of a paper on the technique.

“Traditionally, magnetic actuators use the kinds of small rigid magnets you might put on your refrigerator. You place those magnets on the surface of the soft robot, and they would make it move,” she said. “With this technique, we can print a thin film which we can place directly onto the important parts of the origami robot without reducing its surface area much.”

Tuesday, October 14, 2025

Metamaterials can stifle vibrations with intentional complexity

This 3-D printed “kagome tube” can passively isolate vibrations using its complex, but deliberate, structure.
Image Credit: James McInerney, Air Force Research Laboratory

In science and engineering, it’s unusual for innovation to come in one fell swoop. It’s more often a painstaking plod through which the extraordinary gradually becomes ordinary.

But we may be at an inflection point along that path when it comes to engineered structures whose mechanical properties are unlike anything seen before in nature, also known as mechanical metamaterials. A team led by researchers at the University of Michigan and the Air Force Research Laboratory, or AFRL, have shown how to 3D print intricate tubes that can use their complex structure to stymy vibrations.

Such structures could be useful in a variety of applications where people want to dampen vibrations, including transportation, civil engineering and more. The team’s new study, published in the journal Physical Review Applied, builds on decades of theoretical and computational research to create structures that passively impede vibrations trying to move from one end to the other.

Featured Article

What Is: Cosmic Event Horizon

The Final Boundary An illustration of the Cosmic Event Horizon. Unlike the Observable Universe, which is defined by light that has reached u...

Top Viewed Articles