. Scientific Frontline: Biology
Showing posts with label Biology. Show all posts
Showing posts with label Biology. Show all posts

Friday, January 16, 2026

Exploring metabolic noise opens new paths to better biomanufacturing

WashU researchers track single cells to reveal enzyme copy number fluctuation as the main source of metabolic noise.
Image Credits: Alex Schmitz and Xinyue Mu

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Identification of enzyme copy number fluctuation arising from stochastic gene expression as the primary source of metabolic noise in microbial biomanufacturing.
  • Methodology: Researchers utilized microfluidic devices to track single Escherichia coli cells engineered to produce betaxanthin (a yellow pigment), measuring both the metabolite and the enzyme concurrently during growth and division, followed by computational modeling and fermentation validation.
  • Key Data: Approximately 50% of the observed metabolic noise stems from fluctuations in the production enzyme, while variations in cell growth rate account for less than 10% of the variability; cells were observed switching between high- and low-production states within a few hours.
  • Significance: This finding clarifies why microbial productivity often fluctuates or drops in fermentation tanks, enabling the design of gene circuits that link higher enzyme expression to faster growth for sustained high-yield production.
  • Future Application: Enhanced biomanufacturing of pharmaceuticals, supplements, biodegradable plastics, and fuels by deploying engineered strains that maintain peak metabolic activity.
  • Branch of Science: Bioengineering, Synthetic Biology and Chemical Engineering.
  • Additional Detail: This research supports the development of a zero-waste circular economy by improving the reliability of microbial fermentation processes.

Monday, January 12, 2026

How Wheat Fends Off Fungi

Photo Credit: Wolfgang Hasselmann

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers at the University of Zurich identified a novel immune evasion strategy in wheat powdery mildew (Blumeria graminis), where the fungus employs a secondary effector protein specifically to mask the presence of a primary effector (AvrPm4) from the host's immune system.
  • Biological Mechanism: Unlike typical resistance evasion—where pathogens mutate or discard detected proteins—this mechanism allows the fungus to retain the vital AvrPm4 effector by deploying a second "masking" effector that blocks recognition by the wheat resistance protein Pm4.
  • Critical Interaction: The secondary masking effector exhibits a dual function; while it inhibits Pm4-mediated detection, it is simultaneously vulnerable to recognition by a separate, distinct wheat resistance protein, creating a potential "evolutionary trap."
  • Experimental Application: Laboratory trials demonstrated that "stacking" the resistance gene for Pm4 with the gene targeting the secondary effector successfully neutralizes the pathogen, as the fungus cannot suppress one immune response without triggering the other.
  • Significance: Published in Nature Plants (January 2026), this finding offers a blueprint for engineering durable wheat varieties that exploit interacting fungal effectors to significantly delay or prevent the "breakdown" of disease resistance in global agriculture.

Wednesday, January 7, 2026

The Mechanical Ratchet: A New Mechanism of Cell Division Uncovered

A zebrafish embryo during the first cell division cycle, with the structural protein actin labelled, which marks the cell boundary and ingressing furrow. The image shows a time course from dark orange (before ingression) to brighter orange and finally white as ingression proceeds.
Image Credit: © Alison Kickuth, Brugués Lab

Cell division is an essential process for all life on earth, yet the exact mechanisms by which cells divide during early embryonic development have remained elusive – particularly for egg-laying species. Scientists from the Brugués group at the Cluster of Excellence Physics of Life (PoL) at Dresden University of Technology have revealed a novel mechanism that explains how early embryonic cells may divide without forming a complete contractile ring, traditionally seen as essential for this process. The findings, published in Nature, challenge the long-standing textbook view of cell division, revealing how parts of the cytoskeleton, and material properties of the cell interior (or cytoplasm) cooperate to drive division through a ‘ratchet’ mechanism.     

Exposure to natural light improves metabolic health

The research team provides the first evidence of the beneficial impact of natural light on people with this condition.
Image Credit: © Loïc Metz, UNIGE AI generated
Metabolic diseases have reached epidemic proportions in our society, driven by a sedentary lifestyle coupled with circadian misalignment - a desynchrony between our intrinsic biological clocks and environmental signals. Furthermore, we spend almost 90% of our time indoors, with very limited exposure to natural daylight. To investigate the specific role of daylight in human metabolism, particularly in glycemic control, researchers from the University of Geneva (UNIGE), the University Hospitals of Geneva (HUG), Maastricht University, and the German Diabetes Center (DDZ) conducted a controlled study with thirteen volunteers with type 2 diabetes. When exposed to natural light, participants exhibited more stable blood glucose levels and an overall improvement in their metabolic profile. These results, published in the journal Cell Metabolism, provide the first evidence of the beneficial impact of natural light on people with type 2 diabetes. 

Tuesday, January 6, 2026

Plant science with a twist

Images of roots studied as part of new research exploring the molecular underpinnings to how plants twist their roots.
Image Credit: Dixit Lab / Washington University in St. Louis

From morning glories spiraling up fence posts to grape vines corkscrewing through arbors, twisted growth is a problem-solving tool found throughout the plant kingdom. Roots “do the twist” all the time, skewing hard right or left to avoid rocks and other debris.

Scientists have long known that mutations in certain genes affecting microtubules in plants can cause plants to grow in a twisting manner. In most cases, these are “null mutations,” meaning the twisting is often a consequence of the absence of a particular gene.

This still left a mystery for plant scientists like Ram Dixit, the George and Charmaine Mallinckrodt Professor of Biology at Washington University in St. Louis. The absence of a gene should cause all sorts of other problems for plants and yet twisted growth is an incredibly common evolutionary adaptation.

Thursday, December 25, 2025

What Is: Biological Plasticity

Image Credit: Scientific Frontline

The Paradigm of the Reactive Genome 

The history of biological thought has long been dominated by a tension between the deterministic rigidity of the genotype and the fluid adaptability of the phenotype. For much of the 20th century, the Modern Synthesis emphasized the primacy of genetic mutation and natural selection, often relegating environmental influence to a mere background filter against which genes were selected. In this view, the organism was a fixed readout of a genetic program, stable and unwavering until a random mutation altered the code. However, a profound paradigm shift has occurred, repositioning the organism not as a static entity but as a dynamic system capable of producing distinct, often dramatically different phenotypes from a single genotype in response to environmental variation. This capacity, known as biological or phenotypic plasticity, is now recognized as a fundamental property of life, permeating every level of biological organization—from the epigenetic modification of chromatin in a stem cell nucleus to the behavioral phase transitions of swarming locusts, and ultimately to the structural rewiring of the mammalian cortex following injury. 

Monday, December 22, 2025

Study finds exposure to common air pollutants alters adolescent brain development

For the first time, researchers at OHSU evaluated the long-term impact of air pollution on adolescent brain health and development.
Image Credit: Scientific Frontline / AI generated

Physician-scientists at Oregon Health & Science University warn that exposure to air pollution may have serious implications for a child’s developing brain.

In a recent study published in the journal Environmental Research, researchers in OHSU’s Developmental Brain Imaging Lab found that air pollution is associated with structural changes in the adolescent brain, specifically in the frontal and temporal regions — the areas responsible for executive function, language, mood regulation and socioemotional processing.

Air pollution causes harmful contaminants, such as particulate matter, nitrogen dioxide and ozone, to circulate in the environment. It has been exacerbated over the past two centuries by industrialization, vehicle emissions, and, more recently, wildfires.

Saturday, December 6, 2025

New study reviews research linking probiotic and prebiotic supplements and skin health

Photo Credit: Christin Hume

Researchers from King’s College London and Yakult Science for Health have conducted a comprehensive review of existing research exploring how probiotic, prebiotic, and synbiotic supplements may influence skin health and disease.

The review mapped 516 studies from around the world examining the relationship between these supplements and various aspects of skin health, from general skin condition to the management of diseases such as atopic dermatitis, psoriasis, and acne. 

Our diet can influence skin health through its impact on the gut microbiome — the community of microorganisms living in our digestive tract. The concept of a gut–skin axis was first proposed nearly a century ago but has gained renewed attention in recent years, as growing evidence suggests that changes in gut microbes can affect skin condition and ageing. Probiotics, prebiotics, and synbiotics are thought to promote skin health by modifying the gut microbiome, which may in turn improve skin function and resilience. 

Tuesday, November 25, 2025

Flowering discovery could lead to more reliable mungbean yields

Mungbean flowers at UQ Gatton.
Photo Credit: Megan Pope

New breeding opportunities for an important cash crop have been unlocked by University of Queensland and Grains Research and Development Corporation (GRDC)-supported research. 

Queensland Alliance of Agriculture and Food Innovation PhD candidate Caitlin Dudley, supported by a GRDC Research Scholarship, has revealed key insights about mungbean flowering through extensive field trials. 

“Our research found that when mungbean flowers, and how long they flowers, are independent traits with distinct genetic controls,” Ms Dudley said. 

“That’s important to know because it opens opportunities for breeders to optimize flowering time to improve yield for specific growing environments. 

Monday, November 24, 2025

New clues to why some animals live longer

Sika Zheng
Photo Credit: Courtesy of University of California, Riverside

A collaborative study by scientists at the University of California, Riverside, and University of Southern California reports on how a process known as alternative splicing, often described as “editing” the genetic recipe, may help explain why some mammals live far longer than others.

Published in Nature Communications, the study, which compared alternative RNA processing in 26 mammal species with maximum lifespans ranging from 2.2 to 37 years (>16-fold differences), found that changes in how genes are spliced, more than just how active they are, play a key role in determining maximum lifespan.

Saturday, November 22, 2025

What Is: Mitochondrion


Evolutionary Singularities and the Eukaryotic Dawn

The mitochondrion represents a biological singularity, a discrete evolutionary event that fundamentally partitioned life on Earth into two distinct energetic stratums: the prokaryotic and the eukaryotic. While colloquially reduced to the moniker of "cellular powerhouse," the mitochondrion is, in functional reality, a highly integrated endosymbiont that serves as the master regulator of eukaryotic physiology. It is the nexus of cellular respiration, the arbiter of programmed cell death, a buffer for intracellular calcium, and a hub for biosynthetic pathways ranging from heme synthesis to steroidogenesis. To comprehend the complexity of multicellular life, one must first dissect the intricate molecular sociology of this organelle.   

The origin of the mitochondrion is the subject of intense phylogenomic reconstruction. The prevailing consensus, the endosymbiotic theory, posits that the mitochondrion descends from a free-living bacterial ancestor—specifically a lineage within the Alphaproteobacteria—that entered into a symbiotic relationship with a host archaeal cell approximately 1.5 to 2 billion years ago. This was not a trivial acquisition but a transformative merger. The energetic capacity afforded by the internalization of a bioenergetic specialist allowed the host cell to escape the surface-area-to-volume constraints that limit prokaryotic genome size, facilitating the expansion of the nuclear genome and the development of complex intracellular compartmentalization. 

Thursday, November 20, 2025

‘Worms in space’ experiment aims to investigate the biological effects of spaceflight

Petri Pod
Photo Credit: University of Exeter

A crew of tiny worms will be heading on a mission to the International Space Station in 2026 that will help scientists understand how humans can travel through space safely, using a Leicester-built space pod. The experiment is based upon a concept and early development by the University of Exeter over more than 8 years 

A team of scientists and engineers at Space Park Leicester, the University of Leicester’s pioneering £100 million science and innovation park, have designed and built a miniature space laboratory called a Petri Pod, based around the principle of the biological culture petri dish invented in 1887 and based upon earlier development work by the University of Exeter and Leicester, that will allow scientists on Earth to study biological organisms in space. 

There is a burgeoning global drive for humans to colonize space, the Moon, and other planets of our Solar System, but one of the challenges is the harmful effects of extended exposure to the effects of the space environment on human physiology. This includes microgravity which can lead to bone and muscle loss, fluid shift, and vision problems in humans as well as radiation-induced effects of genetic damage, increased cancer risk, etc. 

How plants search for nutrients

In the case of nutrient deficiency, efficient plants are able to grow long, lateral roots to broaden the radius from which they can take nutrients.
Photo Credit: Andreas Heddergott / Technische Universität München

What makes plants tolerant to nutrient fluctuations? An international research team led by the Technical University of Munich (TUM) and involving the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) has investigated this question on the micronutrient boron. The researchers analyzed 185 gene data sets from the model plant Arabidopsis. Their goal is to then be able to transfer the findings to the important crop plant rapeseed. 

Boron is one of the key micronutrients for the growth and fertility of many plants. However, extreme weather events reduce the availability of this nutrient: drought reduces boron uptake, while flooding washes the nutrient out of the soil – less boron reaches the plants. In the context of climate change, this deficiency represents an additional stressor for plants. Their tolerance to these fluctuations is a decisive factor in determining their yields. 

Wednesday, November 12, 2025

Biology: In-Depth Description

Image Credit: Scientific Frontline / stock image

Biology is the natural science dedicated to the study of life and living organisms, encompassing their physical structure, chemical processes, molecular interactions, physiological mechanisms, development, and evolution. The primary goal of biology is to understand the structure, function, growth, origin, evolution, and distribution of living things.

Tuesday, November 11, 2025

How do plants know how large to grow?

Arabidopsis thaliana is a popular model organism in plant biology and genetics.
Photo Credit: Abhishek Kumar

What makes plants grow to a certain size? From the tiniest cells to whole leaves, roots, and stems, growth has to be carefully coordinated – but until now, it has been hard to compare findings from different studies.

In a new study, researchers at Université de Montréal combined results from 176 experiments on Arabidopsis thaliana, a popular model organism in plant biology and genetics, to build the first ever atlas of plant growth.

Saturday, November 8, 2025

What Is: Hormones

The "Chemical Messenger"
The Endocrine System and Chemical Communication
Image Credit: Scientific Frontline

The Silent Orchestrators

Hormones are the silent orchestrators of the human body. They are the unseen chemical messengers that, in infinitesimally small quantities, conduct the complex symphony of life. These powerful molecules control and regulate nearly every critical function, from our mood, sleep, and metabolism to our growth, energy levels, and reproductive functions.

At its most fundamental level, a hormone is a chemical substance produced by a gland, organ, or specialized tissue in one part of the body. It is then released—typically into the bloodstream—to travel to other parts of the body, where it acts on specific "target cells" to coordinate function.

The power of this system, which has identified over 50 distinct hormones in humans, lies in its exquisite specificity. Although hormones circulate throughout the entire body, reaching every cell, they only affect the cells that are equipped to listen. This is governed by the "lock and key" principle: target cells possess specific "receptors," either on their surface or inside the cell, that are shaped to bind only to a compatible hormone. This report will delve into the world of these powerful molecules, exploring the intricate system that creates them, the chemical language they speak, and the profound, lifelong impact they have on our daily health and well-being.

Wednesday, October 29, 2025

Bowhead whales’ secret to long life may lie in a protein

University of Rochester biologists are considering ways to ramp up in humans the CIRBP protein, which plays a key role in repairing DNA in bowhead whales and other species.
Photo Credit: National Park Service / public domain

As humans age, we become more vulnerable to cancer and other diseases. Bowhead whales, however, can live for up to 200 years while staying remarkably disease resistant.

How does one of the largest animals on Earth stay healthy for centuries? And could their biology hold clues to help humans live longer too?

New research from scientists at the University of Rochester and their collaborators suggests one answer lies in a protein called CIRBP. The protein plays a key role in repairing double-strand breaks in DNA, a type of genetic damage that can cause disease and shorten lifespan in a variety of species, including humans. In a study published in Nature, the researchers—including URochester biology professors Vera Gorbunova and Andrei Seluanov and first authors Denis Firsanov, a postdoctoral researcher, and Max Zacher, a graduate student in their lab—found that bowhead whales have much higher levels of CIRBP than other mammals. The findings offer a new clue to how humans might one day enhance DNA repair, better resist cancer, and slow the effects of aging.

Monday, October 13, 2025

New lab-grown human embryo model produces blood cells

Video Credit: University of Cambridge

Researchers have found a new way to produce human blood cells in the lab that mimics the process in natural embryos. Their discovery holds potential to simulate blood disorders like leukemia, and to produce long-lasting blood stem cells for transplants.

University of Cambridge scientists have used human stem cells to create three-dimensional embryo-like structures that replicate certain aspects of very early human development - including the production of blood stem cells.

Human blood stem cells, also known as hematopoietic stem cells, are immature cells that can develop into any type of blood cell, including red blood cells that carry oxygen and various types of white blood cells crucial to the immune system.

The embryo-like structures, which the scientists have named ‘hematoids’, are self-organizing and start producing blood after around two weeks of development in the lab - mimicking the development process in human embryos.

Ural Scientists Have Discovered Unknown Lichen Species in China

The discoveries were made during a large-scale expedition to the provinces of Gansu and Yunnan
Photo Credit: Courtesy of Ural Federal University

Scientists from UrFU Department of Biodiversity and Bioecology with their colleagues from Taizhou University (China) have discovered unknown lichen species in China. The samples were collected during a large-scale expedition in the provinces of Gansu and Yunnan. Scientists plan to publish a description of the new species in a scientific journal.

“We repeated two expeditions that took place 100 years ago. In the province of Yunnan, we explored the areas where an expedition led by the Austrian botanist, Heinrich von Handel-Mazzetti, was conducted in 1914-1916. In Gansu province, we collected material on the route of the Sino-Swedish expedition led by Sven Hedin in 1927-1935,” said Alexander Paukov, a member of the expedition and professor at UrFU Department of Biodiversity and Bioecology.

Deciphering the mechanisms of genome size evolution

The sequencing of the genomes of a spider from the mainland (Dysdera catalonica, left) and one from the Canary Islands (Dysdera tilosensis, left) opens a new perspective for understanding how genome size evolves in similar species, an enigma that has baffled the scientific community for years.
Photo Credit: Courtesy of University of Barcelona

This study contradicts the more traditional evolutionary view — on island-colonizing species, whose genomes are larger and often have more repetitive elements — and expands the scientific debate on a major puzzle in evolutionary biology: how and why does genome size change during the evolution of living beings?

The study is led by Julio Rozas and Sara Guirao, experts from the Faculty of Biology and the Biodiversity Research Institute (IRBio) of the University of Barcelona. The paper, whose first author is Vadim Pisarenco (UB-IRBio), also involves teams from the University of La Laguna, the Spanish National Research Council (CSIC) and the University of Neuchâtel (Switzerland).

This research offers a surprising perspective to explain a phenomenon that has puzzled scientists for decades: the size of the genome — the total number of DNA base pairs encoding an organism’s genetic information — varies enormously between species, even those with similar biological complexity.

Featured Article

Hidden magma oceans could shield rocky exoplanets from harmful radiation

UNDER ARMOR? Deep layers of molten rock inside some super-earths could generate powerful magnetic fields—potentially stronger than Earth’s—a...

Top Viewed Articles