Algae growth in shallow lakes around the world is affected not only by phosphorus but also by nitrogen Photo Credit: Liz Harrell |
An ecological imbalance in a lake can usually be attributed to increased nutrient inputs. The result: increased phytoplankton growth, oxygen deficiency, toxic cyanobacterial blooms and fish kills. Until now, controls in lake management have focused primarily on phosphorus inputs to counteract this effect. Now, this dogma is shaken by a study performed by the Helmholtz Centre for Environmental Research (UFZ) in collaboration with the University of Aarhus (Denmark) and the University of Life Sciences (Estonia) and published in Nature Communications. The researchers show that nitrogen is also a critical driver for phytoplankton growth in lakes worldwide.
The input of phosphorus and nitrogen from agricultural sources and sewage treatment plants can have a strong effect on phytoplankton growth in rivers and lakes. "However, it was previously assumed that phytoplankton growth in lakes is mostly limited and driven by the availability of phosphorus," says lead author Dr. Daniel Graeber from the UFZ. The underlying theory: If only small quantities of phosphorus are available in a lake, phytoplankton growth is correspondingly limited. In contrast, large quantities of phosphorus will massively drive phytoplankton growth. "In this explanatory model, nitrogen plays no role," says Graeber. "This is based on the fact that specific cyanobacteria in the water can bind the nitrogen contained in the air and introduce it into the lake. This would therefore preclude a long-term nitrogen deficiency in lakes." Nor could an excess supply of nitrogen promote phytoplankton growth - and therefore could not ultimately give rise to eutrophication. "This model forms the basis for lake management worldwide, where the emphasis has been on controlling phosphorus inputs to counteract lake eutrophication," explains Dr. Thomas A. Davidson, limnologist at Aarhus University and last author of the study. "Reducing phosphorus inputs repeatedly fails to prevent eutrophication. This therefore gave rise to the question of whether the water equation included yet another unknown." In its present study, the research team has now clearly identified nitrogen as such a factor, and is thus indicating new directions for inland water science (limnology) and lake management.