. Scientific Frontline: Environmental
Showing posts with label Environmental. Show all posts
Showing posts with label Environmental. Show all posts

Thursday, May 18, 2023

Researchers identify 10 pesticides toxic to neurons involved in Parkinson’s

Photo Credit: Rosyid Arifin

Researchers at UCLA Health and Harvard have identified 10 pesticides that significantly damaged neurons implicated in the development of Parkinson’s disease, providing new clues about environmental toxins’ role in the disease.

While environmental factors such as pesticide exposure have long been linked to Parkinson’s, it has been harder to pinpoint which pesticides may raise risk for the neurodegenerative disorder. Just in California, the nation’s largest agricultural producer and exporter, there are nearly 14,000 pesticide products with over 1,000 active ingredients registered for use.

Through a novel pairing of epidemiology and toxicity screening that leveraged California’s extensive pesticide use database, UCLA and Harvard researchers were able to identify 10 pesticides that were directly toxic to dopaminergic neurons. The neurons play a key role in voluntary movement, and the death of these neurons is a hallmark of Parkinson’s.

Further, the researchers found that co-exposure of pesticides that are typically used in combinations in cotton farming were more toxic than any single pesticide in that group.

Wednesday, May 17, 2023

Study Finds Carrying Pollen Heats Up Bumble Bees, Raising New Climate Change Questions

Photo Credit: Malia Naumchik.

A new study from North Carolina State University finds carrying pollen is a workout that significantly increases the body temperature of bumble bees. This new understanding of active bumble bee body temperatures raises questions about how these species will be impacted by a warmer world due to climate change.

Spend a bit of time at a nearby flower patch and you will spot a fuzzy bumble bee with yellow bumps on her back legs. These yellow bumps are solid packets of pollen that have been carefully collected during the bees’ foraging trip for transport back to their nests. And while bees may seem to move from flower to flower with ease, these pollen packets can weigh up to a third of their body weight. This new study found that – after accounting for environmental temperature and body size – the body temperature of bumble bees carrying pollen was significantly hotter than the temperature of bees that were empty-legged.

Specifically, the researchers found that bee body temperatures rose 0.07°C for every milligram of pollen that they carried, with fully laden bees being 2°C warmer than unladen bees.

Tuesday, May 16, 2023

Sea butterfly life cycle threatened by climate change

An adult sea butterfly, a tiny free swimming sea snail.
Photo Credit: Victoria Peck – British Antarctic Survey

Shelled pteropods, commonly known as sea butterflies, are increasingly exposed to ocean changes, but some species are more vulnerable to this threat. In a new study, published this month in the journal Frontiers in Marine Science, British Antarctic Survey (BAS) scientists examining pteropod life cycles in the Southern Ocean have found that some species might be more vulnerable to this threat due to different timings of their life cycle.

Sea butterflies are tiny, free-swimming sea snails, which are an important part of the marine ecosystem. They are also vulnerable to climate change as their shells are sensitive to ocean acidification. Now, a team of researchers led by BAS has examined the life cycles of two free-swimming sea snail species. They found that one is less vulnerable to changes in the Southern Ocean than the other, which could affect the sea snails on a population level and in turn impact the marine ecosystem.

The world’s oceans absorb approximately a quarter of all carbon dioxide (CO2) emissions. During absorption, CO2 reacts with seawater and oceanic pH levels fall. This is known as ocean acidification and results in lower carbon ion concentrations. Certain ocean inhabitants use carbon ions to build and sustain their shells. Pteropods, which are important components of the marine ecosystem, are among them.

Butterflies on the decline

According to the analysis of the scientists, the orange tip (Anthocharis cardamines) is the only butterfly species in Europe for which a significant increase can be recorded.
Photo Credit: Ulrike Schäfer

Research shows that the numbers of butterflies in meadows and pastures of Europe are in a continuous decline. A new EU regulation aims to stop this trend.

Grassland butterflies will soon play an even greater role in EU nature conservation legislation. Based on the occurrences and population trends of butterflies, the member states are supposed to document the progress they have made in implementing the planned "Nature Restoration Law". The Butterfly Grassland Indicator, recently calculated for the eighth time by European foundation "Butterfly Conservation Europe", is to be used for this. This analysis, which also includes data and expertise from many volunteers in Germany - coordinated by experts from the Helmholtz Centre for Environmental Research (UFZ) in Halle - shows an urgent need for action. This is because the situation of grassland butterflies in Europe has deteriorated considerably since the first calculations in 1990.

The diagnosis sounds worrying: More than 80% of habitats in the EU are currently considered vulnerable. This has negative consequences on their functional capability and thus the services they provide for humans. In order to counter this, the European Commission has proposed a new set of rules. This "Nature Restoration Law" is one of the key elements of the EU Biodiversity Strategy 2030 to be published this May. It defines binding targets for the entire EU for the renaturation of various ecosystems. Two years after the regulation enters into force, member states must submit plans on how they intend to meet these targets. They must also document the success of their measures.

Monday, May 15, 2023

Chemists Unravel Reaction Mechanism for Clean Energy Catalyst

Dmitry Polyansky (left) and David Grills in the pulse radiolysis lab where the research was conducted. Here, Grills programs a syringe pump that delivers the catalyst to the radiolysis cell. Polyansky adjusts the radiolysis cell inside a white insulated compartment.
Photo Credit: Brookhaven National Laboratory

Hydrogen, the simplest element on Earth, is a clean fuel that could revolutionize the energy industry. Accessing hydrogen, however, is not a simple or clean process at all. Pure hydrogen is extremely rare in nature, and practical methods to produce it currently rely on fossil fuels. But if scientists find the right chemical catalyst, one that can split the hydrogen and oxygen in water molecules apart, pure hydrogen could be produced from renewable energy sources such as solar power.

Now, scientists are one step closer to finding that catalyst. Chemists at the University of Kansas and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have unraveled the entire reaction mechanism for a key class of water-splitting catalysts. Their work was published today in Proceedings of the National Academy of Sciences.

“It’s very rare that you can get a complete understanding of a full catalytic cycle,” said Brookhaven chemist Dmitry Polyansky, a co-author of the paper. “These reactions go through many steps, some of which are very fast and cannot be easily observed.”

Heat is the Top Cause of Exertion-Related Injuries and Fatalities for Laborers

This study is one of the first of its kind to evaluate exertion-related injuries and fatalities from word-related activities
Photo Credit: Jeriden Villegas

Dangers like working high above the ground or with heavy machinery are common hazards for laborers in industries like construction or excavation. But there’s another near-universal hazard for laborers – heat.

Margaret Morrissey, a postdoctoral fellow within UConn’s College of Agriculture, Health and Natural Resources and president of occupational safety for the Korey Stringer Institute, led a recently published study that found heat is the number one cause of exertion-related injuries and fatalities on U.S. work sites.

This work was recently published in the International Journal of Environmental Research and Public Health.

Using data reported to OSHA (Occupational Safety and Health Administration), the team found that of all injuries and fatalities, about 3% were exertion related. Of that 3%, a staggering 89% were related to heat stress.

Saturday, May 13, 2023

More research is needed to spread the benefits of electric vehicles equitably

Researchers should focus on equity issues surrounding the spread of electrical vehicles, according to a study by Penn State researchers
Photo Credit: Michael Fousert

Electric vehicles, or EVs, promise to reduce carbon emissions and serve as a tool to help mitigate climate change, but a team of Penn State researchers report there has been little research to determine how equitable the benefits of EVs are and, in fact, whether the technology may unfairly harm some areas and populations.

In a study, the researchers only found 48 papers out of a pool of 9,838 studies that explicitly addressed equity issues of EVs, said Wei Peng, assistant professor of international affairs and civil and environmental engineering, Peng added that the small percentage of papers that addressed equity was telling in itself.

“During that screening process, we began to learn what is over-studied and what is understudied,” said Peng, who is also an associate of the Institute for Computational and Data Sciences. “We highlighted in our paper what we saw as the most understudied: making equity more explicit as research and, second, we saw a need to focus on those emerging markets and parts of the developing world where EVs are going to be more important.”

Unlike vehicles powered by gasoline or diesel fuel, which produce carbon and other chemicals during the combustion process, the electric motors that drive the wheels of an EV do not produce tailpipe emissions. EV owners charge the batteries that are stored on board the EV, rather than add fuel.

Tuesday, May 9, 2023

Wild plants can adapt to agricultural propagation

Wild plants for restoration projects are propagated in culture.
Photo Credit: Ute Matthies

Researchers study rapid domestication of plants grown for seed production to restore ecosystems

Wild plants play an important role in the renaturation of degraded landscapes and ecosystems. The seeds for this are mainly propagated in specialized farms, similar to crops. A team of biologists led by researchers from the University of Marburg has now taken a more detailed look at how the farm production of seeds for restoration affects the characteristics of the species. Across as few as three generations, some species evolved signs of a so-called domestication syndrome - a suite of traits typically evolved by crops during domestication from their wild relatives. The observed changes across the first generations were primarily small and unlikely to compromise the quality of the currently produced seeds. Yet, it is the first warning that seeds of wild plants must be produced with caution and only for a limited number of cultivated generations before new seeds are collected from the wild. The results of the study have been published in the Journal PNAS.

The destruction of natural habitats is the greatest threat to biodiversity. More than half of the world's land area is already degraded. However, this dire state can be partially reversed through ecosystem restoration - the restoration of natural habitats on degraded land. Restoration measures include, for example, restoring forests by planting trees or restoring grasslands by sowing seeds. The seeds for these measures are usually produced in specialized seed farms.

Tuesday, May 2, 2023

The inequalities of low-carbon electricity

UNIGE researchers evaluated the consequences of 248 decarbonization scenarios on 296 European regions.
Photo Credit: Rob Martin

Greenhouse gas reduction, new jobs, new investment opportunities: the benefits of decarbonizing the electricity sector - one of the most polluting - are obvious. However, a transition to lower-carbon electricity production could have a negative impact on some regions, depending on their vulnerabilities and their capacity to adapt, while it could have a positive impact on others. A team from the University of Geneva (UNIGE) has precisely mapped the socio-economic consequences of electricity decarbonization for 296 regions in Europe by 2050. It shows that the southern and south-eastern regions of the continent could be the most vulnerable. These results can be found in Nature Communications.

The electricity consumed in Europe is largely produced by highly polluting fossil fuel power plants (coal, gas). This sector alone is responsible for a quarter of the continent’s greenhouse gas (GHG) emissions. Decarbonizing electricity has therefore become a priority. It is also a prerequisite for the decarbonization of other sectors that need to be electrified, such as heating and transport.

The benefits of such a transition are obvious (reduced air pollution, new employment opportunities). However, the process could also maintain or lead to some new inequalities between regions. For example, an area with a coal-fired power plant will lose many jobs and tax revenues if the plant closes. It will be doubly penalized if there is little land available to build new renewable energy plants.

Why mosses are vital for the health of our soil and Earth

When mosses cover the soil, it's a good sign, not a bad one. They lay foundations for other plant life to thrive.
Photo Credit: University of New South Wales

Often ignored or even removed, moss provides stabilization for plant ecosystems the world over.

Some people see moss growing in their gardens as a problem, but what they may not realize is this ancient ancestor of all plants is bringing lots of benefits to our green spaces, such as protecting against erosion.

Now a massive global study led by UNSW Sydney has found mosses are not just good for the garden, but are just as vital for the health of the entire planet when they grow on topsoil. Not only do they lay the foundations for plants to flourish in ecosystems around the world, they may play an important role mitigating against climate change by capturing vast amounts of carbon.

In a study published today in the journal Nature Geoscience, lead author Dr David Eldridge and more than 50 colleagues from international research institutions described how they collected samples of mosses growing on soil from more than 123 ecosystems across the globe, ranging from lush, tropical rainforest, to barren polar landscapes, through to arid deserts like those found in Australia. The researchers found that mosses cover a staggering 9.4 million km2 in the environments surveyed, which compares in size to Canada or China.

Monday, May 1, 2023

How does climate change affect global bird reproduction?

Avian ecologist Jeff Hoover and his colleagues explored the potential effects of global warming on bird reproductive output across the world. 
Photo Credit: Fred Zwicky

A new study reported in the Proceedings of the National Academy of Sciences assessed changes in the reproductive output of 104 bird species between 1970 and 2019. Illinois Natural History Survey avian ecologist Jeff Hoover, a co-author of the paper, spoke to News Bureau life sciences editor Diana Yates about the findings and how climate change is altering bird ecology and health around the world. 

What is unique about the study?  

This study explored potential effects of global climate change – in particular, warming – on offspring production for over 100 species from more than 200 bird populations across all continents. We looked at data for each of these bird populations over 15 to 49 breeding seasons to consider if changes in local temperatures and precipitation were associated with changes in the average number of offspring produced per female per year.

Beyond effects of a warming climate on individual species’ reproductive output, the study also considered whether climate change may affect offspring production by interacting with other attributes of the birds. Such traits include body mass, migration status, habitat needs, human impacts to local landscapes, the protection/conservation status of sites and whether the birds can produce two broods in a single breeding season. The temporal and spatial scales of this work and the number of species and populations studied were monumental.  

Thursday, April 27, 2023

Twilight zone at risk from climate change

Photo Credit: PublicDomainPictures

Life in the ocean’s “twilight zone” could decline dramatically due to climate change, new research suggests.

The twilight zone (200m to 1,000m deep) gets very little light but is home to a wide variety of organisms and billions of tons of organic matter.

The new study warns that climate change could cause a 20-40% reduction in twilight zone life by the end of the century.

And in a high-emissions future, life in the twilight zone could be severely depleted within 150 years, with no recovery for thousands of years.

“We still know relatively little about the ocean twilight zone, but using evidence from the past we can understand what may happen in the future,” said Dr Katherine Crichton, from the University of Exeter, and lead author of the study.

The research team, made up of paleontologists and ocean modelers, looked at how abundant life was in the twilight zone in past warm climates, using records from preserved microscopic shells in ocean sediments.

Wednesday, April 26, 2023

Woodpecker helps managers promote new life in burned forests

A male Black-backed Woodpecker at Silvio O. Conte National Wildlife Refuge, Brunswick, Vermont, USA.
Photo Credit: U.S. Fish and Wildlife Service Northeast Region
(CC BY 2.0)

Scientists have created a tool based on the habitat preferences of the black-backed woodpecker to help forest managers make decisions that promote regrowth and biodiversity following wildfires.

“Wildfire is like a 10,000-piece puzzle, and climate change is rearranging the pieces,” said Andrew Stillman, a postdoctoral researcher at the Cornell Atkinson Center for Sustainability and the Cornell Lab of Ornithology and first author of “Incorporating Pyrodiversity into Wildlife Habitat Assessments for RapidPost-Fire Management: A Woodpecker Case Study,” published April 25 in Ecological Applications.

“Gigantic, severe fires are becoming the new norm in California due to drought, longer burn seasons and dense forests. But birds do really well in landscapes that are ‘pyrodiverse’ – areas where fire results in uneven patches burned at high, medium, and low severity,” Stillman said.

Black-backed woodpeckers love pyrodiversity. They prefer to build their nest cavities in newly burned areas after high severity fires. But they also like to be adjacent to areas that burned at low intensity, where their young can hide from predators among living trees that still provide cover. Because of the species’ unique habitat associations, they are sensitive to the removal of trees after fire, and forest managers use information on the woodpecker to guide their post-fire planning.

Thursday, April 20, 2023

Towards More Efficient and Eco-Friendly Thermoelectric Oxides with Hydrogen Substitution


Hydrogen substitution is an innovative strategy for boosting the performance of thermoelectric oxide SrTiO3, find researchers at Tokyo Tech. Their latest study reveals that the approach lowers the thermal conductivity and also realizes high electronic conductivity, paving the way for a more efficient thermoelectric energy conversion of waste heat without using costly or environmentally hazardous elements.

Today, over half of the total energy produced from fossil fuels is discarded as waste heat, which accelerates global warming. If we could convert the waste heat into a more useful form of energy like electricity, we could minimize fuel consumption and reduce our carbon footprint. In this regard, thermoelectric energy conversion has gained momentum as a technology for generating electricity from waste heat.

For efficient conversion, a thermoelectric material must have a high conversion efficiency (ZT). So far, realizing a high ZT has been possible only with the use of heavy elements like lead, bismuth, and tellurium. However, the use of rare, expensive, and environmentally toxic elements such as these has limited the large-scale application of thermoelectric energy conversion.

Wednesday, April 19, 2023

A once-stable glacier in Greenland is now rapidly disappearing

 

The K.J.V. Steenstrup Glacier during the summer melt season in 2016.
Photo Credit: NASA/John Sonntag.

As climate change causes ocean temperatures to rise, one of Greenland’s previously most stable glaciers is now retreating at an unprecedented rate, according to a new study. 

Led by researchers at The Ohio State University, a team found that between 2018 and 2021, Steenstrup Glacier in Greenland has retreated about 5 miles, thinned about 20%, doubled in the amount of ice it discharges into the ocean, and quadrupled in velocity. According to the study, such a rapid change is so extraordinary among Greenland ice formations that it now places Steenstrup in the top 10% of glaciers that contribute to the entire region’s total ice discharge.

The study was published today in Nature Communications

The Steenstrup Glacier is part of The Greenland Ice Sheet, a body of ice that covers nearly 80% of the world’s largest island, which is also the single largest contributor to global sea rise from the cryosphere, the portion of Earth’s ecosystem that includes all of its frozen water. While the region plays a crucial part in balancing the global climate system, the area is steadily shrinking as it sheds hundreds of billions of tons of ice each year because of global warming.

Concordia researchers fight shallow lake algae blooms with floating filtration technique

Photo Credit: Liz Harrell

Climate change and human activity have been putting pressure on water bodies worldwide, and Canada’s vast network of lakes is no exception. Over the past decades, increasing nutrient levels have led to a process called eutrophication, in the shallow lakes dotting Quebec’s Laurentian region north of Montreal. These changes have led to a surge in algae blooms, rendering the lakes unusable and possibly disrupting the natural ecosystem.

Restoring these lakes to a healthier condition is a complicated and expensive undertaking, but a new method being investigated by Concordia researchers in the Department of Building, Civil and Environmental Engineering may cut down on both costs and labor in an environmentally friendly way.

Writing in the journal Water, the researchers describe a system of floating geotextile filters that efficiently remove suspended solids, algae and the nutrients from a shallow lake.  While the project is still in development, the researchers say they believe it has the potential to scale up. This technology could then benefit the health of larger bodies of water such as ponds, rivers, coastal areas and bays.

Immediate carbon cuts, common marine heatwave terminology urged

Photo Credit: Patrick Hendry

Over the past 200 years, the ocean and atmosphere have been accumulating massive amounts of carbon dioxide as factories, automobiles, airplanes and more churn out the powerful greenhouse gas. Two articles published in Nature by University of Hawaiʻi at Mānoa oceanographers provide a reality check on the limitations of carbon dioxide removal and a warning­ that marine heatwaves need clear definitions so communities can adapt.

Limitations of carbon dioxide removal

In all the scenarios assessed by the United Nations’ Intergovernmental Panel on Climate Change, nations around the world must dramatically and rapidly reduce their dependence on fossil fuels in order to limit global warming to 1.5–2 °C above pre-industrial levels. Further, the paths to limit warming also require the removal of carbon dioxide from the atmosphere, using methods that are still in the early stages of development.

David Ho, oceanography professor at the UH Mānoa School of Ocean and Earth Science and Technology (SOEST), wrote in his Nature article, “We must stop talking about deploying [carbon dioxide removal] as a solution today, when emissions remain high—as if it somehow replaces radical, immediate emission cuts. We have to shift the narrative as a matter of urgency.”

Tuesday, April 18, 2023

Researchers develop carbon-negative concrete

Graduate student Zhipeng Li and Professor Xianming Shi.
Photo Credit: Courtesy of Washington State University

A viable formula for a carbon-negative, environmentally friendly concrete that is nearly as strong as regular concrete has been developed at Washington State University.  

In a proof-of-concept work, the researchers infused regular cement with environmentally friendly biochar, a type of charcoal made from organic waste, that had been strengthened beforehand with concrete wastewater. The biochar was able to suck up to 23% of its weight in carbon dioxide from the air while still reaching a strength comparable to ordinary cement.   

The research could significantly reduce carbon emissions of the concrete industry, which is one of the most energy- and carbon-intensive of all manufacturing industries. The work, led by doctoral student Zhipeng Li, is reported in the journal Materials Letters.

“We’re very excited that this will contribute to the mission of zero-carbon built environment,” said Xianming Shi, professor in the WSU Department of Civil and Environmental Engineering and the corresponding author on the paper.

Bird feeding helps small birds fight infection

Photo Credit: Lidia Stawinska

Seeds and fat balls do more than just fill small birds’ stomachs. New research from Lund University in Sweden shows that feeding during the wintertime causes birds to be healthier, since they do not have to expend as much energy fighting infections.

A small change in body temperature can be fatal for humans. Small birds, meanwhile, lower their body temperature at night by several degrees during the winter. Just like us, the birds attempt to save energy when it is cold. If they are exposed to infection, the body’s first reaction is to raise its temperature, which clashes with the bird’s simultaneous need to save energy by lowering body temperature.               

“We investigated how access to food during winter affected the balancing act between maintaining a low body temperature in order to save energy, and the possibility of raising body temperature in order to fight infection,” says Hannah Watson, biologist Lund University.

Monday, April 17, 2023

Environmental toxin PCB found in deep sea trench

A sediment core has just been retrieved from the Atacama trench during an expedition with the research vessel R/V Sonne.
Photo Credit: Anni Glud / University of Southern Denmark

Despite being banned in numerous countries since the 1970s, PCBs continue to persist in the environment. Recent findings from deep-sea researchers reveal that PCBs have been detected at the depths of the Atacama Trench in the Pacific Ocean, highlighting the enduring impact of these toxic pollutants.

Throughout their deep-sea expedition, the research team retrieved sediment cores from multiple locations within the Atacama Trench and conducted meticulous analyses to detect PCB occurrences. Astonishingly, every single sample of surface sediment analyzed from all five locations within the trench was found to contain PCBs, indicating the widespread presence of these hazardous pollutants even in the remote depths of the ocean.

The groundbreaking study, helmed by Professor Anna Sobek from Stockholm University's Department of Environmental Science and Professor Ronnie N. Glud, esteemed director of the Danish Center for Hadal Research at the University of Southern Denmark, has been published in the prestigious scientific journal Nature Communications. This significant contribution sheds light on the alarming presence of PCBs in the Atacama Trench and underscores the urgent need for continued research and action to mitigate their adverse effects on marine ecosystems.

Featured Article

Brain-Belly Connection: Gut Health May Influence Likelihood of Developing Alzheimer’s

UNLV study pinpoints 10 bacterial groups associated with Alzheimer’s disease, provides new insights into the relationship between gut makeup...

Top Viewed Articles