. Scientific Frontline: Material Science
Showing posts with label Material Science. Show all posts
Showing posts with label Material Science. Show all posts

Monday, October 20, 2025

Unmasking the Culprits of Battery Failure with a Graphene Mesosponge

Photo Credit: Roberto Sorin

To successfully meet the United Nations' Sustainable Development Goals (SDGs), we need significant breakthroughs in clean and efficient energy technologies. Central to this effort is the development of next-generation energy storage systems that can contribute towards our global goal of carbon neutrality. Among many possible candidates, high-energy-density batteries have drawn particular attention, as they are expected to power future electric vehicles, grid-scale renewable energy storage, and other sustainable applications.

Lithium-oxygen (Li-O2) batteries stand out due to their exceptionally high theoretical energy density, which far exceeds that of conventional lithium-ion batteries. Despite this potential, their practical application has been limited by poor cycle life and rapid degradation. Understanding the root causes of this instability is a critical step toward realizing a sustainable and innovative energy future.

Friday, October 17, 2025

How origami robots with magnetic muscles could make medicine delivery less invasive and more effective

A crawling robot created with the Miura-Ori origami pattern. The dark areas are covered in a thin magnetic rubber film which allows the robot to move.
Photo Credit: Courtesy of North Carolina State University

A new 3-D printing technique can create paper-thin “magnetic muscles,” which can be applied to origami structures to make them move.

By infusing rubber-like elastomers with materials called ferromagnetic particles, researchers at North Carolina State University 3-D printed a thin magnetic film which can be applied to origami structures. When exposed to magnetism, the films acted as actuators which caused the system to move, without interfering with the origami structure’s motion.

"This type of soft magnet is unique in how little space it takes up," said Xiaomeng Fang, assistant professor in the Wilson College of Textiles and lead author of a paper on the technique.

“Traditionally, magnetic actuators use the kinds of small rigid magnets you might put on your refrigerator. You place those magnets on the surface of the soft robot, and they would make it move,” she said. “With this technique, we can print a thin film which we can place directly onto the important parts of the origami robot without reducing its surface area much.”

Tuesday, October 14, 2025

Russian Physicists Found a Way to Speed Up the Process of Developing Solar Panels

According to Ivan Zhidkov, this method allows for the quick selection of only promising materials.
 Photo Credit: Rodion Narudinov

Physicists at Ural Federal University and their colleagues from the Institute of Problems of Chemical Physics of the Russian Academy of Science (IPCP RAS) have found a way to significantly reduce the thousands of hours required for developing perovskite solar panel technology. Scientists have proposed a method that allows us  to determine in a few hours whether solar panels will fail quickly or if the development is promising with a potentially long service life. The test results were published in the journal Physica B: Condensed Matter.

Perovskite films are promising energy converters for various photoelectronic devices, such as solar cells, LEDs, and photodetectors. They have excellent optoelectronic properties and can be grown relatively easily at a low production cost.

Saturday, October 11, 2025

‘Chinese Lantern’ Structure Shifts into More Than a Dozen Shapes for Various Applications

Image Credit: Yaoye Hong

Researchers have created a polymer “Chinese lantern” that can snap into more than a dozen curved, three-dimensional shapes by compressing or twisting the original structure. This rapid shape-shifting behavior can be controlled remotely using a magnetic field, allowing the structure to be used for a variety of applications.

The basic lantern object is made by cutting a polymer sheet into a diamond-like parallelogram shape, then cutting a row of parallel lines across the center of each sheet. This creates a row of identical ribbons that is connected by a solid strip of material at the top and bottom of the sheet. By connecting the left and right ends of the solid strips at top and bottom, the polymer sheet forms a three-dimensional shape resembling a roughly spherical Chinese lantern.

Thursday, October 9, 2025

Novel Metal Alloy Withstands Extreme Conditions

Alloy production by means of arc melting in the material synthesis lab of the Institute for Applied Materials – Materials Science and Engineering.
Photo Credit: Chiara Bellamoli, KIT

A new material might contribute to a reduction of the fossil fuels consumed by aircraft engines and gas turbines in the future. A research team from Karlsruhe Institute of Technology (KIT) has developed a refractory metal-based alloy with properties unparalleled to date. The novel combination of chromium, molybdenum, and silicon is ductile at ambient temperature. With its melting temperature of about 2,000 degrees Celsius, it remains stable even at high temperatures and is at the same time oxidation resistant.

High-temperature-resistant metallic materials are required for aircraft engines, gas turbines, X-ray units, and many other technical applications. Refractory metals such as tungsten, molybdenum, and chromium, whose melting points are around or higher than 2,000 degrees Celsius, can be most resistant to high temperatures. Their practical application, however, has limitations: They are brittle at room temperature and, in contact with oxygen, they start to oxidize causing failure within a short time already at temperatures of 600 to 700 degrees Celsius. Therefore, they can only be used under technically complex vacuum conditions – for example as X-ray rotating anodes.

Tuesday, October 7, 2025

Engineers Develop Solid Lubricant to Replace Toxic Materials in Farming

Photo Credit: Courtesy of North Carolina State University

Researchers have developed a new class of nontoxic, biodegradable solid lubricants that can be used to facilitate seed dispersal using modern farming equipment, with the goal of replacing existing lubricants that pose human and environmental toxicity concerns. The researchers have also developed an analytical model that can be used to evaluate candidate materials for future lubricant technologies.

Modern farming makes use of various machines to accurately and efficiently plant seeds in the ground. However, it can be difficult to prevent the seeds from jamming in these machines. To keep the seeds flowing smoothly, farmers use solid lubricants that prevent the seeds from clumping up or sticking together. Unfortunately, commercially available lubricants make use of talc or microplastics, and can pose threats to farmers, farmland and pollinators.

“Lubricants are essential to modern farming, but existing approaches are contributing to toxicity in our farmlands that affect farmer health, soil health and pollinators that are essential to our food supply,” says Dhanush Udayashankara Jamadgni, co-lead author of a paper on the work and a Ph.D. student at North Carolina State University. “We’ve developed a new class of safe solid lubricants that are effective and nontoxic.”

Tuesday, September 30, 2025

Scientists uncover room-temperature route to improved light-harvesting and emission devices

Dasom Kim
Photo Credit: Jorge Vidal/Rice University

Atoms in crystalline solids sometimes vibrate in unison, giving rise to emergent phenomena known as phonons. Because these collective vibrations set the pace for how heat and energy move through materials, they play a central role in devices that capture or emit light, like solar cells and LEDs.

A team of researchers from Rice University and collaborators have found a way to make two different phonons in thin films of lead halide perovskite interact with light so strongly that they merge into entirely new hybrid states of matter. The finding, reported in a study published in Nature Communications, could provide a powerful new lever for controlling how perovskite materials harvest and transport energy.

To get a specific light frequency in the terahertz range to interact with phonons in the halide perovskite crystals, the researchers fabricated nanoscale slots ⎯ each about a thousand times thinner than a sheet of cling wrap ⎯ into a thin layer of gold. The slots acted like tiny metallic traps for light, tuning its frequency to that of the phonons and thus giving rise to a strong form of interaction known as “ultrastrong coupling.”

Scientists solve mystery of loop current switching in Kagome metals

Structure and electron behavior in kagome metals: (A) The triangular atomic arrangement showing how tiny electrical currents flow in loops. (B) How electrons organize into wave-like density patterns. (C) How electrons normally move through the material. (D) How electron movement is affected by the wave patterns. (E) The special combined state where both loop currents and wave patterns exist together, creating the conditions for magnetic switching.
Image Credit: Tazai et al., 2025

Quantum metals are metals where quantum effects—behaviors that normally only matter at atomic scales—become powerful enough to control the metal's macroscopic electrical properties. 

Researchers in Japan have explained how electricity behaves in a special group of quantum metals called kagome metals. The study is the first to show how weak magnetic fields reverse tiny loop electrical currents inside these metals. These switching changes the material's macroscopic electrical properties and reverses which direction has easier electrical flow, a property known as the diode effect, where current flows more easily in one direction than the other.  

Monday, September 29, 2025

Rapid flash Joule heating technique unlocks efficient rare‑earth element recovery from electronic waste

The research team’s method uses flash Joule heating.
Photo Credit: Jeff Fitlow/Rice University.

A team of researchers including Rice University’s James Tour and Shichen Xu has developed an ultrafast, one-step method to recover rare earth elements (REEs) from discarded magnets using an innovative approach that offers significant environmental and economic benefits over traditional recycling methods. Their study was published in the Proceedings of the National Academy of Sciences Sept. 29, 2025.

Conventional rare earth recycling is energy-heavy and creates toxic waste. The research team’s method uses flash Joule heating (FJH), which rapidly raises material temperatures to thousands of degrees within milliseconds, and chlorine gas to extract REEs from magnet waste in seconds without needing water or acids. The breakthrough supports U.S. efforts to boost domestic mineral supplies.

“We’ve demonstrated that we can recover rare earth elements from electronic waste in seconds with minimal environmental footprint,” said Tour, the T.T. and W.F. Chao Professor of Chemistry, professor of materials science and nanoengineering and study corresponding author. “It’s the kind of leap forward we need to secure a resilient and circular supply chain.”

Friday, September 26, 2025

Layered Cobalt Catalyst Reimagines Pigment as a Pathway for Carbon Dioxide Recycling

Comparison of the structure and performance of the multilayer CoPc/KB core-shell hybrid in this work with previous single-layer molecular Pc-based catalysts for CO2-to-CO electroreduction.
Image Credit: ©Hiroshi Yabu et. al.

Researchers at the Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, have introduced a new approach for electrochemical carbon dioxide (CO₂) reduction. By designing multilayer cobalt phthalocyanine (CoPc)/carbon core-shell structures, the team has demonstrated a catalyst architecture that makes CO₂ conversion into carbon monoxide (CO) both stable and efficient.

The study combined large-scale data analysis and artificial intelligence (AI) to screen 220 molecular candidates. Cobalt phthalocyanine - widely known as a blue pigment - emerged as the most effective option for selective CO production. This discovery became the basis for constructing electrodes optimized for CO₂ utilization.

"We wanted to move beyond conventional thinking that isolated molecules perform best," said Hiroshi Yabu, a professor at the (WPI-AIMR) who led the research. "Instead, our results show that stacking these molecules in ordered layers produces a much stronger catalytic effect."

Thursday, September 25, 2025

Atomic Neighborhoods in Semiconductors Provide New Avenue for Designing Microelectronics

An illustration of the semiconductor material investigated for this study, which is composed of germanium with small amounts of silicon and tin. The germanium atoms are depicted as gray spheres, the silicon as red and tin as blue.
Image Credit: Minor et al/Berkeley Lab

A team led by Lawrence Berkeley National Laboratory (Berkeley Lab) and George Washington University have confirmed that atoms in semiconductors will arrange themselves in distinctive localized patterns that change the material’s electronic behavior. The research, published today in Science, may provide a foundation for designing specialized semiconductors for quantum-computing and optoelectronic devices for defense technologies.

On the atomic scale, semiconductors are crystals made of different elements arranged in repeating lattice structures. Many semiconductors are made primarily of one element with a few others added to the mix in small quantities. There aren’t enough of these trace additives to cause a repeating pattern throughout the material, but how these atoms are arranged next to their immediate neighbors has long been a mystery. Do the rare ingredients just settle randomly among the predominant atoms during material synthesis, or do the atoms have preferred arrangements, a phenomenon seen in other materials called short-range order (SRO)? Until now, no microscopy or characterization technique could zoom in close enough, and with enough clarity, to examine tiny regions of the crystal structure and directly interpret the SRO.

The Surprising Flexibility of Ice

Watch how the same nanoscale forces shape both ice cubes and snowflakes. PNNL researchers just recorded the first-ever molecular scale video of ice formed from liquid water over a century after this snowflake was photographed.
Image Credit: Sara Levine | Pacific Northwest National Laboratory

You’d think there’s nothing surprising left to discover about water. After all, researchers have been studying its properties for centuries. 

But today researchers at Department of Energy’s Pacific Northwest National Laboratory report a new finding. Even though ice forms in a perfectly hexagonal lattice, it is surprisingly flexible and malleable, which explains why ice so often has trapped gas bubbles. 

The findings come from the first-ever molecular-resolution observations of nanoscale samples of ice frozen from liquid water, which appear today in the journal Nature Communications.

“We observed dissolved gas not only generate cavities in ice crystals, but also migrate, merge with other gas bubbles and dissolve—behavior that is only possible due to the unusual nature of bonding in ice,” said James De Yoreo, principal investigator of the work and a Battelle Fellow at PNNL. “This work opens up an entirely new opportunity to explore ice crystallization and melting behavior at scales unimaginable only a few years ago.”

Tuesday, September 23, 2025

Scientists visualize atomic structures in moiré materials

On the left is an artistic depiction of a twisted double layer forming a moiré pattern created by overlapping 2D sheets; each layer’s structure is shown separately on the right.
Image Credit: Sumner Harris/ORNL, U.S. Dept. of Energy

Researchers with the Department of Energy’s Oak Ridge National Laboratory and the University of Tennessee, Knoxville, have created an innovative method to visualize and analyze atomic structures within specially designed, ultrathin bilayer 2D materials. When precisely aligned at an angle, these materials exhibit unique properties that could lead to advancements in quantum computing, superconductors and ultraefficient electronics.

These developments bolster U.S. leadership in materials innovation, energy technologies and secure communication, and they lay the groundwork for a future defined by leading-edge progress.

Monday, September 22, 2025

New tool makes generative AI models more likely to create breakthrough materials

The researchers applied their technique to generate millions of candidate materials consisting of geometric lattice structures associated with quantum properties. The kagome lattice, represented here, can support the creation of materials that could be useful for quantum computing.
Image Credit: Jose-Luis Olivares, MIT; iStock
(CC BY-NC-ND 4.0)

The artificial intelligence models that turn text into images are also useful for generating new materials. Over the last few years, generative materials models from companies like Google, Microsoft, and Meta have drawn on their training data to help researchers design tens of millions of new materials.

But when it comes to designing materials with exotic quantum properties like superconductivity or unique magnetic states, those models struggle. That’s too bad, because humans could use the help. For example, after a decade of research into a class of materials that could revolutionize quantum computing, called quantum spin liquids, only a dozen material candidates have been identified. The bottleneck means there are fewer materials to serve as the basis for technological breakthroughs.

Now, MIT researchers have developed a technique that lets popular generative materials models create promising quantum materials by following specific design rules. The rules, or constraints, steer models to create materials with unique structures that give rise to quantum properties.

“The models from these large companies generate materials optimized for stability,” says Mingda Li, MIT’s Class of 1947 Career Development Professor. “Our perspective is that’s not usually how materials science advances. We don’t need 10 million new materials to change the world. We just need one really good material.”

Thursday, September 18, 2025

Shining a light on germs

Microbe hunters: Empa researchers Paula Bürgisser and Giacomo Reina from the Nanomaterials in Health laboratory in St. Gallen.
Photo Credit: Empa

Light on – bacteria dead. Disinfecting surfaces could be as simple as that. To turn this idea into a weapon against antibiotic-resistant germs, Empa researchers are developing a coating whose germicidal effect can be activated by infrared light. The plastic coating is also skin-friendly and environmentally friendly. A first application is currently being implemented for dentistry.

Antibiotic-resistant bacteria and emerging viruses are a rapidly increasing threat to the global healthcare system. Around 5 million deaths each year are linked to antibiotic-resistant germs, and more than 20 million people died during the COVID-19 virus pandemic. Empa researchers are therefore working on new, urgently needed strategies to combat such pathogens. One of the goals is to prevent the spread of resistant pathogens and novel viruses with smart materials and technologies.

Surfaces that come into constant contact with infectious agents, such as door handles in hospitals or equipment and infrastructure in operating theaters, are a particularly suitable area of application for such materials. An interdisciplinary team from three Empa laboratories, together with the Czech Palacký University in Olomouc, has now developed an environmentally friendly and biocompatible metal-free surface coating that reliably kills germs. The highlight: The effect can be reactivated again and again by exposing it to light.

Monday, February 10, 2025

Titanium-Based Prosthesis Alloy Scientists Have Tested Deformation

The co-authors of the development, as well as specialists from the UrFU Department of Heat Treatment and Metal Physics.
Photo Credit: Rodion Narudinov

Scientists from Ural Federal University, Institute of Strength Physics and Materials Science of the SB RAS and National Research Tomsk Polytechnic University have tested new titanium-based alloys, which have several advantages over traditional medical ones. Two types of titanium alloys — TNZ (including niobium and zirconium) and multi-element TNZTS (with niobium, zirconium, tantalum and tin) — were subjected to uniaxial pressing and multi-pass rolling. As a result of exposure, ultrafine-grained structures were formed in the alloys, which significantly increased the strength and hardness of the material. The results of the research were published in the Materials Letters Journal

Crystal structure of titan (α-phase) that formed after tests trial improved the strength characteristics of the TNZ-alloy, but at the same time reduced its plasticity and Young’s modulus, important characteristics of materials for prostheses. In case of elastic deformations of the bone—implant system, the load on the tissue depends on the ratio of the Young's modulus of the implant material and bone tissue. The lower this ratio, the lower the probability of necrosis and destruction of bone by implant pressure. Mechanical and biocompatibility increase the prospects for the introduction of materials developed by scientists in medicine, aerospace and defense industries.

Monday, February 3, 2025

The metal that does not expand

Metal usually expands when heated
Photo Credit: Courtesy of Technische Universität Wien

Breakthrough in materials research: an alloy of several metals has been developed that shows practically no thermal expansion over an extremely large temperature interval.

Most metals expand when their temperature rises. The Eiffel Tower, for example, is around 10 to 15 centimeters taller in summer than in winter due to its thermal expansion. However, this effect is extremely undesirable for many technical applications. For this reason, the search has long been on for materials that always have the same length regardless of the temperature. Invar, for example, an alloy of iron and nickel, is known for its extremely low thermal expansion. How this property can be explained physically, however, was not entirely clear until now.

Now, a collaboration between theoretical researchers at TU Wien (Vienna) and experimentalists at University of Science and Technology Beijing has led to a decisive breakthrough: using complex computer simulations, it has been possible to understand the invar effect in detail and thus develop a so-called pyrochlore magnet – an alloy that has even better thermal expansion properties than invar. Over an extremely wide temperature range of over 400 Kelvins, its length only changes by around one ten-thousandth of one per cent per Kelvin.

Saturday, February 1, 2025

Better digital memories with the help of noble gases

Adding the noble gas xenon when manufacturing digital memories enables a more even material coating even in small cavities.
Photo Credit: Olov Planthaber

The electronics of the future can be made even smaller and more efficient by getting more memory cells to fit in less space. One way to achieve this is by adding the noble gas xenon when manufacturing digital memories. This has been demonstrated by researchers at Linköping University in a study published in Nature Communications. This technology enables a more even material coating even in small cavities.

Twenty-five years ago, a camera memory card could hold 64 megabytes of information. Today, the same physical size memory card can hold 4 terabytes – over 60,000 times more information.

An electronic storage space, such as a memory card, is created by alternating hundreds of thin layers of an electrically conductive and an insulating material. A multitude of very small holes are then etched through the layers. Finally, the holes are filled with a conductive material. This is done by using a technique in which vapors of various substances are used to create thin material layers.

Friday, January 31, 2025

This Multiferroic Can Take the Heat - up to 160℃

Image Credit: Tohoku University

While most multiferroics are limited such that the hottest they can operate at is room temperature, a team of researchers at Tohoku University demonstrated that terbium oxide Tb2(MoO4)3 works as a multiferroic even at 160 ℃.

As one can imagine, a material that loses its functionality from a hot summer's day or simply the heat generated by the device itself has limited practical applications. This is the major Achilles heel of multiferroics - materials that possess close coupling between magnetism and ferroelectricity. This coupling makes multiferroics an attractive area to explore, despite that weakness.

In order to surmount this weakness to unleash the full potential of multiferroics, the research team investigated the candidate material Tb2(MoO4)3. It successfully showed the hallmark traits of multiferroics, and was able to manipulate electric polarization using a magnetic field, even at 160 ℃. This is a huge jump from the previous limit of approximately 20 ℃. Without that major Achilles heel, this remarkable finding means that multiferroics can meaningfully be applied to areas such as spintronics, memory devices that consume less power, and light diodes.

Tuesday, January 28, 2025

Neutrons reveal lithium flow could boost performance in solid-state battery

Scientists from Duke University and ORNL used neutron scattering to see how lithium ions, represented by the glowing orbs, move through a diffusion gate, represented by the gold triangle, in a solid-state electrolyte.
Image Credit: Phoenix Pleasant/ORNL, U.S. Dept. of Energy

A team of scientists led by a professor from Duke University discovered a way to help make batteries safer, charge faster and last longer. They relied on neutrons at the Department of Energy’s Oak Ridge National Laboratory to understand at the atomic scale how lithium moves in lithium phosphorus sulfur chloride (Li6PS5Cl), a promising new type of solid-state battery material known as a superionic compound. 

Using neutrons at ORNL’s Spallation Neutron Source (SNS), and machine-learned molecular dynamics simulations at the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, they found that lithium ions easily diffused in the solid material, as they do in liquid electrolytes, allowing faster, safer charging. The results, published in Nature Physics, could bring the best of both worlds for solid-state electrolytes, or SSEs, enabling next-generation batteries.  

“Our research was about figuring out what is going on inside these materials using the power of neutron scattering and large-scale computer simulations,” said Olivier Delaire, associate professor of mechanical engineering, materials science, chemistry and physics at Duke University. Delaire arrived at ORNL in 2008 as a Clifford G. Shull Fellow and won DOE’s Office of Science Early Career Award in 2014. Today, he leads a research group at Duke dedicated to investigating the atomic structure and dynamics of energy materials.

Featured Article

What Is: Extinction Level Events

A Chronicle of Earth's Biotic Crises and an Assessment of Future Threats Image Credit: Scientific Frontline Defining Biotic Catastrophe ...

Top Viewed Articles