. Scientific Frontline: Material Science
Showing posts with label Material Science. Show all posts
Showing posts with label Material Science. Show all posts

Friday, January 16, 2026

Honeycomb lattice sweetens quantum materials development

In a honeycomb lattice of potassium cobalt arsenate, cobalt spins (red and blue arrows) couple and align. Potassium, arsenic and oxygen are removed to highlight the magnetic cobalt atoms.
Image Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Scientists synthesized potassium cobalt arsenate, a new magnetic honeycomb lattice material where structural distortions cause cobalt spins to strongly couple and align, serving as a stepping stone toward quantum spin liquids.
  • Methodology: The team crystallized the compound from a solution of potassium, arsenic, oxygen, and cobalt at low temperatures, subsequently characterizing it via neutron scattering, electron microscopy, heat capacity measurements, and computational modeling.
  • Key Data: Theoretical calculations indicated that the material's "Kitaev" interaction is currently weaker than other magnetic forces, causing the spins to freeze into an ordered state rather than forming the desired fluid quantum state.
  • Significance: This study establishes a critical experimental platform for generating Majorana fermions, exotic collective excitations theorized to be essential building blocks for stable, error-resistant quantum computing.
  • Future Application: Researchers plan to tune the material's magnetic interactions by altering its chemical composition or applying high pressure, aiming to develop robust components for next-generation quantum sensors and computing architectures.
  • Branch of Science: Condensed Matter Physics, Materials Science, and Inorganic Chemistry.
  • Additional Detail: The research supports the global search for "Kitaev materials"—substances with electrically insulating interiors but highly conductive edges—that can resist the loss of quantum properties during environmental interaction.

Wednesday, January 14, 2026

A Nanomaterial Flex — MXene Electrodes Help OLED Display Technology Shine, While Bending and Stretching

Researchers from Drexel University and Seoul National University have created organic light-emitting diodes (OLEDs) that could improve mobile technology displays and enable wearable technology.
Photo Credit: Courtesy of Drexel University

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers successfully engineered a highly stretchable Organic Light-Emitting Diode (OLED) capable of expanding to 1.6 times its original length (60% elongation) while maintaining functional electroluminescence, overcoming the rigidity of traditional displays.
  • Electrode Mechanism: The device replaces brittle indium tin oxide (ITO) components with transparent, flexible electrodes composed of MXene nanomaterials and silver nanowires, which provide high electrical conductivity and mechanical robustness under stress.
  • Active Layer Innovation: A specialized "exciplex-assisted phosphorescent" (ExciPh) organic layer was developed to serve as the light-emitting medium, utilizing chemical engineering to facilitate efficient charge transport and exciton formation even during physical deformation.
  • Performance Metrics: The OLEDs demonstrate superior stability compared to existing technologies, exhibiting only a 10.6% reduction in performance when subjected to significant strain and retaining 83% of light output after 100 repeated stretching cycles.
  • Significance/Application: This technology clears the path for "skin-mounted" displays and deformable optoelectronics, enabling wearable devices that can visualize real-time health data (such as body temperature and blood flow) directly on the skin.

Self-Healing Composite Can Make Airplane, Automobile and Spacecraft Components Last for Centuries

3D printed thermoplastic healing agent (blue overlay) on glass-fiber reinforcement (left); infrared thermograph during in situ self-healing of a fractured fiber-composite (middle); 3D printed healing agent (blue) on carbon-fiber reinforcement (right).
Image Credit: Jason Patrick, NC State University.

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers developed a self-healing fiber-reinforced polymer (FRP) composite capable of enduring more than 1,000 autonomous repair cycles, offering a potential solution to the persistent problem of delamination.
  • Mechanism: The system utilizes a thermoplastic healing agent (poly(ethylene-co-methacrylic acid)) 3D-printed onto fiber reinforcements, which is activated by embedded carbon-based heater layers to melt and re-bond cracks.
  • Key Data: Experimental testing verified 1,000 fracture-and-heal cycles, with fracture resistance starting at 175% of standard non-healing composites and maintaining approximately 60% strength after extensive cycling.
  • Context: Predictive modeling estimates the material could last 125 years with quarterly healing or up to 500 years with annual healing, vastly exceeding the typical 15–40 year lifespan of current FRPs.
  • Significance: This technology is positioned to drastically reduce maintenance costs and waste in aerospace and renewable energy sectors, particularly for spacecraft and wind turbines where manual repair is difficult or impossible.
  • Critical Detail: The gradual decline in healing efficacy is attributed to the accumulation of brittle fiber micro-debris and waning chemical reactions at the interface, though performance remains statistically viable for century-scale use.

Monday, January 12, 2026

X-raying auditory ossicles – a new technique reveals structures in record time

Scientists at PSI were able to observe the local collagen structures in an ossicle by scanning it with an X-ray beam. The different colours of the cylinders indicate how strongly the collagen bundles are spatially aligned in a section measuring 20 by 20 by 20 micrometres.
Image Credit: © Paul Scherrer Institute PSI/Christian Appel

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers refined a "tensor tomography" X-ray diffraction technique that simultaneously detects biological structures ranging from nanometers to millimeters, significantly accelerating the imaging process.
  • Methodology: The team used a precisely rotated X-ray beam (approx. 20 micrometers wide) to generate millions of interference patterns around two axes, which software then reconstructed into a 3D tomogram.
  • Key Statistic: The optimized process reduced the measurement time for a complete tomogram from roughly 24 hours to just over one hour.
  • Context: To validate the method, the team imaged the auditory ossicle (anvil) of the ear, successfully mapping the spatial orientation of nanometer-sized collagen fibers crucial for sound transmission.
  • Significance: This drastic reduction in scan time makes statistical studies involving hundreds of samples feasible, aiding biomedical research in areas like bone tissue analysis and implant development.

Saturday, January 10, 2026

Local Magnetic Field Gradients Enable Critical Material Separations

A new high-throughput Mach–Zehnder interferometry imaging capability at Pacific Northwest National Laboratory, developed for critical minerals and materials extraction research, enables direct spatiotemporal imaging of ion concentrations in magnetic fields and reveals sustained concentration waves and rare earth ion enrichment regions driven by magnetic field gradients.
Photo Credit: Andrea Starr | Pacific Northwest National Laboratory

Rare earth elements (REEs) are crucial for energy-related applications and are expected to play an increasingly important role in emerging technologies. However, these elements have very similar chemical properties and naturally coexist as complex mixtures in both traditional and unconventional feedstocks, making their separation challenging. Researchers in the Non-Equilibrium Transport Driven Separations (NETS) initiative used standard low-cost permanent magnets to induce a magnetic field gradient in solutions containing REEs. They found that these permanent magnets create local magnetic fields strong enough to lead to regions enriched in REE ions, with concentration increases of up to three to four times the concentration of the starting solution. Directly observing magnetic field–driven ion enrichment in real time, without intrusive probes that disturb the system, has long been a challenge. The development of a new high-throughput Mach–Zehnder interferometry imaging capability has now enabled visualization of these dynamics as they unfold.

Friday, January 9, 2026

Scientists develop stronger, longer-lasting perovskite solar cells

Perovskite solar cell
Photo Credit: Xiaoming Chang

Scientists have found a way to make perovskite solar cells not only highly efficient but also remarkably stable, addressing one of the main challenges holding the technology back from widespread use. 

Perovskite has long been hailed as a game-changer for the next generation of solar power. However, advances in material design are still needed to boost the efficiency and durability of solar panels that convert sunlight into electricity. 

Led by Professor Thomas Anthopoulos from The University of Manchester, the research team achieved this by fine-tuning the molecules that coat the perovskite surfaces. They utilized specially designed small molecules, known as amidinium ligands, which act like a molecular “glue” to hold the perovskite structure together. 

Thursday, January 8, 2026

New process for stable, long-lasting all-solid-state batteries

An innovative manufacturing process paves the way for the battery of the future: In their latest study PSI researchers demonstrate a cost-effective and efficient way to produce all-solid-state batteries with a long lifespan. The image shows a test cell used to fabricate and test the all-solid-state battery developed at PSI.
Photo Credit: © Paul Scherrer Institute PSI/Mahir Dzambegovic

Researchers at the Paul Scherrer Institute PSI have achieved a breakthrough on the path to practical application of lithium metal all-solid-state batteries – the next generation of batteries that can store more energy, are safer to operate, and charge faster than conventional lithium-ion batteries. 

All-solid-state batteries are considered a promising solution for electromobility, mobile electronics, and stationary energy storage – in part because they do not require flammable liquid electrolytes and therefore are inherently safer than conventional lithium-ion batteries. 

Two key problems, however, stand in the way of market readiness: On the one hand, the formation of lithium dendrites at the anode remains a critical point. These are tiny, needle-like metal structures that can penetrate the solid electrolyte conducting lithium ions between the electrodes, propagate toward the cathode, and ultimately cause internal short circuits. On the other hand, an electrochemical instability – at the interface between the lithium metal anode and the solid electrolyte – can impair the battery’s long-term performance and reliability. 

Tuesday, December 23, 2025

Tohoku University and Fujitsu Use AI to Discover Promising New Superconducting Material

The AI technology was utilized to automatically clarify causal relationships from measurement data obtained at NanoTerasu Synchrotron Light Source
Image Credit: Scientific Frontline / stock image

Tohoku University and Fujitsu Limited announced their successful application of AI to derive new insights into the superconductivity mechanism of a new superconducting material. Their findings demonstrate an important use case for AI technology in new materials development and suggests that the technology has the potential to accelerate research and development. This could drive innovation in various industries such as environment and energy, drug discovery and healthcare, and electronic devices.

The two parties used Fujitsu's AI platform Fujitsu Kozuchi to develop a new discovery intelligence technique to accurately estimate causal relationships. Fujitsu will begin offering a trial environment for this technology in March 2026. Furthermore, in collaboration with the Advanced Institute for Materials Research (WPI-AIMR), Tohoku University , the two parties applied this technology to data measured by angle-resolved photoemission spectroscopy (ARPES), an experimental method used in materials research to observe the state of electrons in a material, using a specific superconducting material as a sample.

Tuesday, December 16, 2025

Membrane magic: Researchers repurpose fuel cells membranes for new applications

Daniel Hallinan Jr. works with perfluorosulfonic acid (PFSA) polymers in his lab in the Aero-Propulsion Mechatronics & Energy building at the FAMU-FSU College of Engineering.
Photo Credit: Scott Holstein/FAMU-FSU College of Engineering

FAMU-FSU College of Engineering researchers are applying fuel cell technology to new applications like sustainable energy and water treatment.

In a study published in Frontiers in Membrane Science and Technology, the researchers examined a type of membrane called a perfluorosulfonic acid polymer membrane, or PFSA polymer membrane. These membranes act as filters, allowing protons to move through, but blocking electrons and gases.

In the study, the researchers examined how boiling these membranes — a common treatment applied to the material — affects their performance and helps them work as specialized tools for different applications.

Monday, December 15, 2025

Scientists create stable, switchable vortex knots inside liquid crystals

Vortex knots inside a chiral nematic liquid crystal
Image Credit: Ivan Smalyukh

The knots in your shoelaces are familiar, but can you imagine knots made from light, water, or from the structured fluids that make LCD screens shine? 

They exist, and in a new Nature Physics study, researchers created particle-like so-called “vortex knots” inside chiral nematic liquid crystals, a twisted fluid like those used in LCD screens. For the first time, these knots are stable and could be reversibly switched between different knotted forms, using electric pulses to fuse and split them. 

“These particle-like topological objects in liquid crystals share the same kind of topology found in theoretical models of glueballs, experimentally-elusive theoretical subatomic particles in high-energy physics, in hopfions and heliknotons studied in light, magnetic materials, and in vortex knots found across many other systems,” explains Ivan Smalyukh, director of the Hiroshima University WPI-SKCM² Satellite at the University of Colorado Boulder and a professor in CU Boulder’s Department of Physics. 

Rice researchers uncover the hidden physics of knot formation in fluids

From left to right, top to bottom: Sibani Lisa Biswal, Fred MacKintosh, Lucas H.P. Cunha and Luca Tubiana.
Photo Credit: Courtesy of Rice University

Knots are everywhere — from tangled headphones to DNA strands packed inside viruses — but how an isolated filament can knot itself without collisions or external agitation has remained a longstanding puzzle in soft-matter physics.

Now, a team of researchers at Rice University, Georgetown University and the University of Trento in Italy has uncovered a surprising physical mechanism that explains how a single filament, even one too short or too stiff to easily wrap around itself, can form a knot while sinking through a fluid under strong gravitational forces. The discovery, published in Physical Review Letters, provides new insight into the physics of polymer dynamics, with implications ranging from understanding how DNA behaves under confinement to designing next-generation soft materials and nanostructures.

“It is inherently difficult for a single, isolated filament to knot on its own,” said Sibani Lisa Biswal, corresponding author, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering. “What’s remarkable about this study is that it shows a surprisingly simple and elegant mechanism that allows a filament to form a knot purely because of stochastic forces as it sediments through a fluid under strong gravitational forces.”

Electrodes created using light

Researcher at LiU have developed a technique where visible light can be used to create electrodes from conductive plastics completely without hazardous chemicals. The technique requires no advanced laser setups – visible light from simple LED lamps, such as a party light, can drive the polymerization. 
Photo Credit: Thor Balkhed

Visible light can be used to create electrodes from conductive plastics completely without hazardous chemicals. This is shown in a new study carried out by researchers at Linköping and Lund universities. The electrodes can be created on different types of surfaces, which opens up for a new type of electronics and medical sensors. 

“I think this is something of a breakthrough. It’s another way of creating electronics that is simpler and doesn’t require any expensive equipment,” says Xenofon Strakosas, assistant professor at the Laboratory of Organic Electronics, LOE, at Linköping University. 

Tuesday, December 9, 2025

Breakthrough could connect quantum computers at 200 times longer distance

New research from University of Chicago Pritzker School of Molecular Engineering Asst. Prof. Tian Zhong could make it possible for quantum computers to connect at distances up to 1,243 miles, shattering previous records.
Photo Credit: Jason Smith

A new nanofabrication approach could increase the range of quantum networks from a few kilometers to a potential 2,000 km, bringing quantum internet closer than ever

Quantum computers are powerful, lightning-fast and notoriously difficult to connect to one another over long distances. 

Previously, the maximum distance two quantum computers could connect through a fiber cable was a few kilometers. This means that, even if such cable were run between them, quantum computers in downtown Chicago’s Willis Tower and the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) on the South Side would be too far apart to communicate with each other. 

Friday, December 5, 2025

Soft Electronics That Shape-Shift

Vidhika Damani and assistant professor Laure Kayser inspect a sample of the reversible conductive hydrogel they developed for bioelectronics applications.
Photo Credit: Evan Krape

What if a doctor could inject an electricity-conducting liquid into the body, let it temporarily solidify to record nerve signals or jump-start healing, and then return it to liquid form for easy removal?

That vision is edging closer to reality. University of Delaware researchers have developed a reversible conductive hydrogel, a material that can alternate between liquid and gel states. The hydrogel is designed to serve as an interface between conventional electronics and the body’s tissues, offering promise for both injectable implants and wearable devices.

The research team, led by Laure Kayser, assistant professor of materials science and engineering at UD’s College of Engineering, describes the new material in Nature Communications.

Monday, December 1, 2025

Untangling magnetism

Spin-wave spectrum of CoFe₂O₄ measured on the MAPS spectrometer (left) and the corresponding spin-wave calculation (right). The large ~60 meV splitting between the two magnon branches originates from the strong imbalance of molecular fields on the A and B cation sites, as illustrated in the inset crystal structure.
Image Credit: KyotoU / Yusuke Nambu

Magnetostriction and spin dynamics are fundamental properties of magnetic materials.  Despite having been studied for decades, finding a decisive link between the two in bulk single crystals had remained elusive. That is until a research team from several institutions, including Kyoto University, sought to examine these properties in the compound CoFe2O4, a spinel oxide (chemical formula AB2O4) widely used in numerous medical and industrial applications.

Spin dynamics describe how the tiny magnetic moments of atoms in a magnetic material interact and change orientation with time, while magnetostriction describes how a material changes shape or dimensions in response to a change in magnetization. These properties are central to the operation of sensors and actuators that employ magnetoelastic materials that change their magnetization under mechanical stress.

Smart sensor tag protects sensitive goods

Inconspicuous: The biodegradable tag is as thin as a sheet of paper, but still able to measure the temperature and relative humidity.
Photo Credit: Empa

Researchers from Empa, EPFL and CSEM have developed a green smart sensing tag that measures temperature and humidity in real time – and can also detect whether a temperature threshold has been exceeded. In the future, this could be used to monitor sensitive shipments such as medicines or food. The sensor tag itself is completely biodegradable. 

Vast flows of goods circle the globe every day. They include particularly delicate shipments, such as certain vaccines, medicines and food products. To ensure that these products arrive safely at their destination, they must remain within a certain temperature and humidity range throughout the entire supply chain. But how do we ensure this? It is costly and unsustainable to equip every single shipment with silicon-based sensors and chips. And measurements at nodes in the supply chain tell you nothing about what has already happened to the delicate goods on their way thus far. 

Sunday, November 30, 2025

Material Science: In-Depth Description

Image Credit: Scientific Frontline / stock image

Materials Science is the interdisciplinary field dedicated to understanding and manipulating the relationship between the atomic or molecular structure of a material, its macroscopic properties, and how it is processed.

At its core, this discipline seeks to uncover why materials behave the way they do and how to engineer new materials with specific, tailored characteristics to solve complex technological challenges. It bridges the gap between the fundamental theory of physics and chemistry and the practical applications of engineering.

Friday, November 21, 2025

Rice engineers show lab grown diamond films can stop costly mineral buildup in pipes

Pulickel Ajayan and Xiang Zhang
Photo Credit: Jeff Fitlow/Rice University

In industrial pipes, mineral deposits build up the way limescale collects inside a kettle ⎯ only on a far larger and more expensive scale. Mineral scaling is a major issue in water and energy systems, where it slows flow, strains equipment and drives up costs.

A new study by Rice University engineers shows that lab-grown diamond coatings could resolve the issue, providing an alternative to chemical additives and mechanical cleaning, both of which offer only temporary relief and carry environmental or operational downsides.

“Because of these limitations, there is growing interest in materials that can naturally resist scale formation without constant intervention,” said Xiang Zhang, assistant research professor of materials science and nanoengineering and a first author on the study alongside Rice postdoctoral researcher Yifan Zhu. “Our work addresses this urgent need by identifying a coating material that can ‘stay clean’ on its own.”

Wednesday, November 19, 2025

Extending the Lifespan of Electrocatalysts

The image shows the nanosized atom probe tomography specimens on a silicon microtip coupon.
Photo Credit: © Tong Li

A research team has discovered how to keep a cobalt-based oxide electrocatalyst active and stable. The element chromium plays a crucial role in this process.  

Although chromium itself is not an active element, its continuous dissolution enables a reversible surface transformation that keeps the Co-Cr spinel oxide electrocatalyst active and stable. This could significantly improve the efficiency of hydrogen production. These findings stem from researchers at Ruhr University Bochum, Germany, the Max Planck Institutes for Sustainable Materials in Düsseldorf and for Coal Research in Mülheim, Forschungszentrum Jülich and the Helmholtz Institute for Renewable Energies in Erlangen-Nürnberg. They report their results in the journal Nature Communications

Monday, November 17, 2025

Two-step flash Joule heating method recovers lithium‑ion battery materials quickly and cleanly

(From left) Shichen Xu, James Tour, Alex Lathem, Karla Silva and Ralph Abdel Nour.
Photo Credit: Jared Jones/Rice University

A research team at Rice University led by James Tour has developed a two-step flash Joule heating-chlorination and oxidation (FJH-ClO) process that rapidly separates lithium and transition metals from spent lithium-ion batteries. The method provides an acid-free, energy-saving alternative to conventional recycling techniques, a breakthrough that aligns with the surging global demand for batteries used in electric vehicles and portable electronics.

Published in Advanced Materials, this research could transform the recovery of critical battery materials. Traditional recycling methods are often energy intensive, generate wastewater and frequently require harsh chemicals. In contrast, the FJH-ClO process achieves high yields and purity of lithium, cobalt and graphite while reducing energy consumption, chemical usage and costs.

“We designed the FJH-ClO process to challenge the notion that battery recycling must rely on acid leaching,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering. “FJH-ClO is a fast, precise way to extract valuable materials without damaging them or harming the environment.”

Featured Article

Scientists develop molecules that may treat Crohn’s disease

Broad scientists designed molecules (pictured in teal) that can bind CARD9 (white with red and blue), a protein linked to inflammatory bowel...

Top Viewed Articles