![]() |
| This picturesque vista is the watershed in southwest Iceland, where researchers collected mars rock analog samples. Image Credit: Michael Thorpe/NASA Goddard |
To say that a trip from Earth to Mars is merely a long one would be a massive understatement. On July 30, 2020, when the National Aeronautics and Space Administration (NASA) sent its Mars rover “Perseverance” atop an Atlas V rocket to the red planet to collect rock samples, it took the rover nearly seven months to reach its destination. This was only one step in a complex process that will take at least a decade to bring home these samples from Mars. While this is an unusually long wait for a sample shipment, it gives scientists ample time to find the best approach to study these rare and precious rocks.
In preparation, an international collaboration of scientists has started investigating sedimentary rock samples found in Iceland, a country whose terrain shares some compositional similarities and whose climate may be similar to ancient climates in certain Martian regions. Their results, published today in American Mineralogist, shed light on how high-resolution analyses of these complex, natural minerals can give scientists a deeper understanding of their geological history, both at home on Earth and 194 million miles away on Mars, though this requires careful interpretation. This collaboration is made up of researchers from the University of Maryland, NASA Goddard, Johnson Space Center, University of Göttingen, Chungbuk National University, and the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Brookhaven National Laboratory.
.jpg)



_1.jpg)


_MoreDetail-v3_x2_2160x1732.jpg)
_MoreDetail-v3_x2_2966x1734.jpg)

.jpg)

.jpg)
.jpg)

.jpg)
.jpg)
