. Scientific Frontline: 2023

Wednesday, October 4, 2023

Llamas Help Mitigate Effects of Climate Change

Photo Credit: Dr. Anais Zimmer

Introducing llamas (Llama glama) into land exposed by retreating glaciers can speed the establishment of stable soils and ecosystem formation, mitigating some of the harmful effects of climate change, according to experimental research conducted by scientists at The University of Texas at Austin and partner institutions in Peru.

“Glaciers are melting rapidly around the world, creating unstable and dangerous landscapes, acid rock drainage, and land rushes for mining that are disrespecting local and Indigenous land rights,” said Tim Beach, professor of geography and the environment and one of the paper’s authors. “The research shows that llamas, when managed by Indigenous herders, are accelerating soil fertility and plant succession.”

The study is published in Nature Scientific Reports.

Land exposed by glacial melting initially has low nutrient soil that is inhospitable to vegetation. Without intervention, these landscapes can take hundreds of years to stabilize.

Small doses of mushrooms can have a beneficial effect on mental disorders

"Liberty Cap" Psilocybin mushroom
Photo Credit: Ameruverse Digital Marketing Media

A new research result from the University of Southern Denmark opens the door to the possibility of using psilocybin, the active compound in mushrooms with psychedelic properties, as a therapeutic tool through microdosing.

Psilocybin has long been recognized as a classic psychedelic substance and has recently been investigated for its potential to assist in the treatment of various psychiatric disorders, primarily depression and addiction, through therapy supplemented with a high dose of psilocybin.

In such therapeutic treatment, the patient takes psilocybin after thorough therapeutic preparation and undergoes a psychedelic experience in a supportive environment with a trained therapist. Subsequently, the experience is integrated over several therapy sessions.

Experiments are being conducted with patients at hospitals, including Bispebjerg Hospital and Rigshospitalet.

Reducing fishing gear could save whales with low impacts to California’s crab fishermen

 Less gear in the water means fewer chances for Whales to become entangled.
Photo Credit E. Lyman/ NOAA Sanctuaries

Sometimes simple solutions are better. It all depends on the nature of the problem. For humpback whales, the problem is the rope connecting a crab trap on the seafloor to the buoy on the surface. And for fishermen, it’s fishery closures caused by whale entanglements.

Managing this issue is currently a major item on California’s agenda, and it appears less fishing gear may be the optimal solution. So says a team of researchers led by Christopher Free, at UC Santa Barbara, after modeling the benefits and impacts that several management strategies would have on whales and fishermen. Their results, published in the journal Biological Conservation, find that simply reducing the amount of gear in the water is more effective than dynamic approaches involving real-time monitoring of whale populations. There may even be solutions on the horizon that provide these benefits with fewer drawbacks.

“We were trying to figure out what types of management strategies would work best at reducing whale entanglements in the Dungeness crab fishery while also minimizing impacts to fishing,” said first author Free, a researcher at the university’s Marine Science Institute. “And what we found is that some of the simpler strategies, such as just reducing the amount of gear allocated to the fishermen, outperformed a lot of the more complex management strategies.”

How Tubular Bacterial Weapons Compromise Plant Cells to Cause Disease

An apple tree infected with fire blight reveals leaves that appear as if they were burned. HHMI Investigator Sheng Yang He and a team of researchers identified a plug-like molecule that could lead to new techniques to fight fire blight and other plant diseases.
Photo Credit: Sebastian Stabinger
(CC BY-SA 3.0.)

Some bacteria attack crops by delivering proteins that puncture the plant’s cell membranes, according to new research that explains the long-sought mechanism by which pathogens can release water within plant tissues, causing devastating infections.

In experiments first described in a preprint on bioRxiv and later published in Nature, a team led by plant microbiologist Sheng Yang He went a step further and found a way to block the holes the microbes make. Their research identified a plug-like molecule that showed potential for controlling diseases including fire blight, which can kill off apple and pear trees, leaving orchards looking as if they were burned.

“For 25 years, my lab and others have been trying to understand exactly how these bacterial proteins manipulate water within leaves,” says He, a Howard Hughes Medical Investigator at Duke University. “Now we have an answer: They open up channels through which water can move, disrupting plants’ internal water balance.”

Researchers have searched for this kind of detailed insight in hopes of opening the door to improved ways for fighting plant disease. Usually making such a connection can take years, if it is possible at all. However, He and his colleagues capitalized on this discovery quickly — using the dimensions of the pores to identify molecules perfectly sized for blocking them and protecting plants.

New dog, old tricks: New AI approach yields ‘athletically intelligent’ robotic dog

A doglike robot can navigate unknown obstacles using a simple algorithm that encourages forward progress with minimal effort.
Video Credit: Shanghai Qi Zhi Institute/Stanford University

With a simplified machine learning technique, AI researchers created a real-world “robodog” able to leap, climb, crawl, and squeeze past physical barriers as never before.

Someday, when quakes, fires, and floods strike, the first responders might be packs of robotic rescue dogs rushing in to help stranded souls. These battery-powered quadrupeds would use computer vision to size up obstacles and employ doglike agility skills to get past them.

Toward that noble goal, AI researchers at Stanford University and Shanghai Qi Zhi Institute say they have developed a new vision-based algorithm that helps robodogs scale high objects, leap across gaps, crawl under thresholds, and squeeze through crevices – and then bolt to the next challenge. The algorithm represents the brains of the robodog.

“The autonomy and range of complex skills that our quadruped robot learned is quite impressive,” said Chelsea Finn, assistant professor of computer science and senior author of a new peer-reviewed paper announcing the teams’ approach to the world, which will be presented at the upcoming Conference on Robot Learning. “And we have created it using low-cost, off-the-shelf robots – actually, two different off-the-shelf robots.”

Insect Cyborgs: Towards Precision Movement

Image Credit: ©Dai Owaki

Insect cyborgs may sound like science fiction, but it's a relatively new phenomenon based on using electrical stimuli to control the movement of insects. These hybrid insect computer robots, as they are scientifically called, herald the future of small, high mobile and efficient devices.

Despite significant progress being made, however, further advances are complicated by the vast differences between different insects' nervous and muscle systems.

In a recent study published in the journal eLife, an international research group has studied the relationship between electrical stimulation in stick insects' leg muscles and the resultant torque (the twisting force that makes the leg move).

Predictions of the effect of drugs on individual cells are now possible

How differently do various cancer cells respond to the effects of drugs? A new method from Zurich researchers now makes it possible to accurately predict the effect on individual cells.
Photo Credit: National Cancer Institute

Experts from ETH Zurich, the University of Zurich, and University Hospital Zurich have used machine learning to jointly create a innovative method. This new approach can predict how individual cells react to specific treatments, offering hope for more accurate diagnoses and therapeutics.

Cancer is triggered by changes in cells that lead to the proliferation of pathogenic tumor cells. In order to find the most effective combination and dosage of drugs, it is advantageous if physicians can see inside the body, so to speak, and determine what effect the drugs will have on individual cells.

An interdisciplinary research team of biomedical and computer scientists from ETH Zurich, the University of Zurich, and the University Hospital Zurich has now developed a machine learning approach that allows such cell changes and drug effects to be modelled and predicted with much greater accuracy and nuance than before.

Growth of coral reefs likely cannot keep pace with rising sea level

The upper panel shows a coral reef margin in Belize with living branched Acropora (elkhorn) and platy Millepora (fire) corals, which are both competitive and fast-growing. The lower panel shows broken branches of dead Acropora corals overgrown by weedy, fertile hill and finger corals (Porites) as well as fleshy algae.
Photo Credit: E. Gischler.

In identifying and dating coral remains in drill cores taken from Belize reefs, a team of experts from Goethe University Frankfurt and partners from Germany, the USA and Canada has shown the importance of specific types of coral for reef-building during the current Holocene geological epoch, dating back some 12,000 years. The scientists found that certain coral species disappeared for longer periods in the past due to climate changes, and identified another climate-related threat to coral reefs: In addition to warming and ocean acidification, among others, the rising sea level also threatens coral reefs, whose growth rates cannot keep up. 

Tropical coral reefs could end up being one of the first victims of climate change. The marine diversity hotspots are threatened by and declining as a result of global warming, ocean acidification, a deterioration of water quality, as well as diseases of reef-building organisms, and their growth is unable to keep up with the projected rise in sea levels. These are some of the conclusions drawn by an interdisciplinary team of scientists from Goethe University Frankfurt's Institute of Geosciences, the company ReefTech Inc., the GEOMAR Helmholtz Center of Ocean Research, the University of Ottawa's Department of Earth and Environmental Sciences, and the GSI Helmholtz Center of Heavy Ion Research. Their findings are based on an examination of 22 drill cores collected from the Belize barrier reef and atolls, the largest reef system in the Atlantic Ocean, which focused on identifying and dating coral growth and accretion rates over the past 9,000 years. 

Optimizing Continuous-Variable Functions with Quantum Annealing

Quantum annealing (QA) can be competitive to classical algorithms in optimizing continuous-variable functions when running on appropriate hardware, show researchers from Tokyo Tech. By comparing the performance of QA running on a D-Wave quantum computer to that of state-of-the-art classical algorithms, they find that a sufficient suppression of thermal noise can enable QA to significantly outperform classical algorithms.

Quantum annealing (QA) is a cutting-edge algorithm that leverages the unique properties of quantum computing to tackle complex combinatorial optimization problems (a class of mathematical problems dealing with discrete-variable functions). Quantum computers use the rules of quantum physics to solve such problems potentially faster than classical computers. In essence, they can explore multiple solutions to a problem simultaneously, giving them a significant speed advantage for certain tasks over classical computers. In particular, QA harnesses the phenomenon of "quantum tunneling," where particles can "tunnel" through energy barriers without the requisite energy to cross over them, to find solutions for combinatorial optimization problems.

Up until now, QA has almost exclusively been used to solve discrete-variable functions (functions that have discrete-valued variables). The potential of QA for optimizing continuous-variable functions has remained largely unexplored.

Wastewater detects signs of antimicrobial resistance in aged care

Photo Credit: Jsme MILA

A new study published today, analyzing wastewater samples from several aged care and retirement homes in Adelaide, has uncovered worrying signs of antimicrobial resistance (AMR) in at least one facility.

High levels of bacterial resistance against three common antibiotics – ceftazidime, cefepime and ciprofloxacin – were identified in one aged care residential home. A second facility recorded above average levels of antimicrobial resistance to gentamicin, putting residents’ health at risk.

The listed antibiotics are used to treat a variety of bacterial infections, including pneumonia, gynecological, urinary and respiratory tract infections, and those affecting bones and joints.

University of South Australia microbiologist, Associate Professor Rietie Venter, who led the study, says AMR is a concerning trend in aged care facilities.

“Antimicrobial resistance is projected to lead to 300 million deaths worldwide by 2060, and aged care residents are among the most vulnerable due to frequent, inappropriate use of medicines,” Assoc Prof Venter says.

Study raises concerns over powdered infant formula preparation machines

Photo Credit: Lucy Wolski

A study by Swansea University academics into powdered infant formula preparation safety has revealed that 85% of the 74 infant formula preparation machines tested by parents in UK homes did not appear to produce water that would be hot enough to kill all harmful bacteria in infant formula, and this could pose a serious risk to infant health.

This was compared to 69 parents in the study who used a kettle to heat the water used to prepare infant formula, where 22% reported water temperatures that were not hot enough to kill all harmful bacteria.

Almost three quarters of infants in the UK are fed infant formula in the first six weeks of life and this rises to 88% by six months of age. 

Formula-fed infants have a higher risk of gastrointestinal infections compared to breastfed infants1 which can be attributed, in part, to bacterial contamination from: the powdered infant formula itself (which cannot be made sterile), the equipment used for feeding, and also preparing infant formula with unclean hands. To help reduce the risk of such infections, the NHS has adopted the World Health Organization (WHO) recommendation that water used to make infant formula should be boiled and cooled, so that it is at a temperature of at least 70oC to eliminate bacteria.

Tuesday, October 3, 2023

Potential genetic screening for aggressive melanoma

Photo Credit: cottonbro studio

Researchers from The University of Queensland and The Alfred hospital in Melbourne have identified gene variants which may contribute to people being at higher risk for nodular melanoma.

Dr Mitchell Stark from UQ’s Frazer Institute said nodular melanoma only accounts for around 14 per cent of invasive melanoma cases, but the aggressive subtype is the largest contributor to melanoma deaths.

“Melanoma is highly curable by surgery when diagnosed early, but nodular melanoma is often detected later because of its rapid growth rate and short window of opportunity for detection and diagnosis,” Dr Stark said.

“Up to 27 per cent of nodular melanoma cases appear as a skin-colored tumor, as opposed to other more pigmented melanomas, adding an additional challenge to early diagnosis.

“We hope that by identifying these rare variants, it could help establish screening programs to determine the people most at risk.”

Scientists illuminate the mechanics of solid-state batteries

The image conceptualizes the processing, structure and mechanical behavior of glassy ion conductors for solid state lithium batteries.
Illustration Credit: Adam Malin/ORNL, U.S. Dept. of Energy

As current courses through a battery, its materials erode over time. Mechanical influences such as stress and strain affect this trajectory, although their impacts on battery efficacy and longevity are not fully understood.

A team led by researchers at the Department of Energy’s Oak Ridge National Laboratory developed a framework for designing solid-state batteries, or SSBs, with mechanics in mind. Their paper, published in Science, reviewed how these factors change SSBs during their cycling.

“Our goal is to highlight the importance of mechanics in battery performance,” said Sergiy Kalnaus, a scientist in ORNL’s Multiphysics Modeling and Flows group. “A lot of studies have focused on chemical or electric properties but have neglected to show the underlying mechanics.”

The team spans several ORNL research areas including computation, chemistry and materials science. Together, their review painted a more cohesive picture of the conditions that affect SSBs by using perspectives from across the scientific spectrum. “We’re trying to bridge the divide between disciplines,” said Kalnaus.

AI copilot enhances human precision for safer aviation

With Air-Guardian, a computer program can track where a human pilot is looking (using eye-tracking technology), so it can better understand what the pilot is focusing on. This helps the computer make better decisions that are in line with what the pilot is doing or intending to do.
Illustration Credit: Alex Shipps/MIT CSAIL via Midjourney

Imagine you're in an airplane with two pilots, one human and one computer. Both have their “hands” on the controllers, but they're always looking out for different things. If they're both paying attention to the same thing, the human gets to steer. But if the human gets distracted or misses something, the computer quickly takes over.

Meet the Air-Guardian, a system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). As modern pilots grapple with an onslaught of information from multiple monitors, especially during critical moments, Air-Guardian acts as a proactive copilot; a partnership between human and machine, rooted in understanding attention.

But how does it determine attention, exactly? For humans, it uses eye-tracking, and for the neural system, it relies on something called "saliency maps," which pinpoint where attention is directed. The maps serve as visual guides highlighting key regions within an image, aiding in grasping and deciphering the behavior of intricate algorithms. Air-Guardian identifies early signs of potential risks through these attention markers, instead of only intervening during safety breaches like traditional autopilot systems. 

New strategy for eye condition could replace injections with eyedrops

Yulia Komarova, UIC associate professor in the department of pharmacology and regenerative medicine at the College of Medicine
Photo Credit: Komarova

A new compound developed at the University of Illinois Chicago could potentially offer an alternative to injections for the millions of people who suffer from an eye condition that causes blindness.

Wet age-related macular degeneration causes vision loss due to the uncontrolled growth and leakage of blood vessels in the back of the eye. A new paper in Cell Reports Medicine led by UIC researcher Yulia Komarova finds that a small-molecule inhibitor can reverse damage from AMD and promote regenerative and healing processes. 

The drug can also be delivered via eyedrops — an improvement over current treatments for AMD, which require repeated injections into the eye. 

“The idea was to develop something that can be more patient-friendly and doesn’t require a visit to the doctor’s office,” said Komarova, associate professor of pharmacology at the College of Medicine. 

Pulling carbon dioxide straight from the air

John Hegarty and Ben Shindel with new ions to facilitate carbon capture
Photo Credit: Courtesy of Northwestern University

Even as the world slowly begins to decarbonize industrial processes, achieving lower concentrations of atmospheric carbon requires technologies that remove existing carbon dioxide from the atmosphere — rather than just prevent the creation of it.

Typical carbon capture catches CO2 directly from the source of a carbon-intensive process. Ambient carbon capture, or “direct air capture” (DAC) on the other hand, can take carbon out of typical environmental conditions and serves as one weapon in the battle against climate change, particularly as reliance on fossil fuels begins to decrease and with it, the need for point-of-source carbon capture.

New research from Northwestern University shows a novel approach to capture carbon from ambient environmental conditions that looks at the relationship between water and carbon dioxide in systems to inform the “moisture-swing” technique, which captures CO2 at low humidities and releases it at high humidities. The approach incorporates innovative kinetic methodologies and a diversity of ions, enabling carbon removal from virtually anywhere.

Study suggests large mound structures on Kuiper belt object Arrokoth may have common origin

The large mound structures that dominate one of the lobes of the Kuiper belt object Arrokoth are similar enough to suggest a common origin, according to a new study led by Southwest Research Institute (SwRI) Planetary Scientist and Associate Vice President Dr. Alan Stern.
Graphic Credit: Courtesy of SwRI

A new study led by Southwest Research Institute (SwRI) Planetary Scientist and Associate Vice President Dr. Alan Stern posits that the large, approximately 5-kilometer-long mounds that dominate the appearance of the larger lobe of the pristine Kuiper Belt object Arrokoth are similar enough to suggest a common origin. The SwRI study suggests that these “building blocks” could guide further work on planetesimal formational models. Stern presented these findings this week at the American Astronomical Society’s 55th Annual Division for Planetary Sciences (DPS) meeting in San Antonio. These results are now also published in the peer-reviewed Planetary Science Journal.

NASA’s New Horizons spacecraft made a close flyby of Arrokoth in 2019. From those data, Stern and his coauthors identified 12 mounds on Arrokoth’s larger lobe, Wenu, which are almost the same shape, size, color and reflectivity. They also tentatively identified three more mounds on the object’s smaller lobe, Weeyo..

Understanding the behavior of light and matter - key to future technologies

Scientific Frontline stock image

If we can understand how and why light and matter behave as they do, we are one step closer to solving some of the most fundamental problems in physics. Finding the answers to these questions drives Ville Maisi, Associate Professor of Solid States Physics at NanoLund.

As long as he can remember he has been interested in electric circuits and physics. With the support of a new ERC Consolidator Grant, he has now started to bring these two fields together to develop ultra-sensitive detectors for high frequency electronic signals – building on the principles of quantum physics.

Measuring microwaves

His research project aims to design ultra-sensitive microwave detectors that can be used to measure tiny microwave light signals consisting of elementary particles, called photons. They will be 100 times more sensitive detectors than currently exists. Microwave measurements are important in quantum technology, astronomy, communications, and other technology areas such as radars.

Wearable sensor to monitor ‘last line of defense’ antibiotic

Sandia National Laboratories postdoctoral fellow Alex Downs places a wearable puck with microneedles under a microscope. Sandia researchers have combined earlier work on minimally invasive microneedles with nanoscale sensors to create a wearable sensor patch capable of continuously monitoring the levels of a ‘last line of defense’ antibiotic.
Photo Credit: Craig Fritz

Since the discovery of penicillin in 1928, bacteria have evolved numerous ways to evade or outright ignore the effects of antibiotics. Thankfully, healthcare providers have an arsenal of infrequently used antibiotics that are still effective against otherwise resistant strains of bacteria.

Researchers at Sandia National Laboratories have combined earlier work on painless microneedles with nanoscale sensors to create a wearable sensor patch capable of continuously monitoring the levels of one of these antibiotics.

The specific antibiotic they’re tracking is vancomycin, which is used as a last line of defense to treat severe bacterial infections, said Alex Downs, a Jill Hruby Fellow and project lead. Continuous monitoring is crucial for vancomycin because there is a narrow range within which it effectively kills bacteria without harming the patient, she added.

“This is a great application because it requires tight control,” said Philip Miller, a Sandia biomedical engineer who advised on the project. “In a clinical setting, how that would happen is a doctor would check on the patient on an hourly basis and request a single time-point blood measurement of vancomycin. Someone would come to draw blood, send it to the clinic and get an answer back at some later time. Our system is one way to address that delay.”

The researchers shared how to make these sensors and the results of their tests in a paper recently published in the scientific journal Biosensors and Bioelectronics.

ALPHA collaboration at CERN confirms antimatter falls in the same way as matter for the first time

An aerial view of the ALPHA experimental area.
Photo Credit: © CERN, Julien Marius Ordan.

Swansea University physicists, as leading members of the ALPHA (Antihydrogen Laser Physics Apparatus) collaboration at CERN, have demonstrated that atoms of antihydrogen fall to Earth in the same way as their matter equivalents for the first time.

Published in Nature, the study's groundbreaking results rule out the possibility of antimatter being accelerated upwards in Earth's gravity and bring researchers one step closer to unravelling one of the most high-profile problems in physics.

ALPHA creates antihydrogen atoms by taking negatively charged antiprotons and binding them with positively charged positrons. The neutral but slightly magnetic antimatter atoms are then confined in a magnetic trap, which prevents them from coming into contact with matter and annihilating.

Using a vertical apparatus called ALPHA-g, the 'g' denoting the local acceleration of gravity, the ALPHA team can measure the vertical positions at which antihydrogen atoms annihilate with matter once the trap's magnetic field is switched off, allowing the atoms to escape.

Type 2 diabetes diagnosis at age 30 can reduce life expectancy by up to 14 years

Photo Credit: isens usa

Even people who do not develop the condition until later in life – with a diagnosis at age 50 years – could see their life expectancy fall by up to six years, an analysis of data from 19 high-income countries found.

The researchers say the findings, published in The Lancet Diabetes & Endocrinology, highlight the urgent need to develop and implement interventions that prevent or delay onset of diabetes, especially as the prevalence of diabetes among younger adults is rising globally.

Increasing levels of obesity, poor diet and increased sedentary behavior are driving a rapid rise in the number of cases of type 2 diabetes worldwide. In 2021, 537 million adults were estimated to have diabetes worldwide, with an increasing number diagnosed at younger ages.

Type 2 diabetes increases an individual’s risk of a range of complications including heart attack and stroke, kidney problems, and cancer. Previous estimates have suggested that adults with type 2 diabetes die, on average, six years earlier than adults without diabetes. There is uncertainty, however, about how this average reduction in life expectancy varies according to age at diagnosis.

Controlled burns help prevent wildfires. Climate change is limiting their use

 The U.S. Army conducting a controlled burn of over 400 acres at Fort Ord National Monument near Monterrey, California, in 2017.
Photo Credit: Flickr/PresidioofMonterrey

Prescribed fires, sometimes called controlled burns, are one of the most common tools for preventing catastrophic wildfires in the Western United States. Lit by highly trained firefighters, they help clear away excess dry plant matter that might otherwise turn a healthy vegetation fire into a raging inferno.

To safely carry out controlled burns, firefighters must wait for specific weather conditions: not so damp as to prevent combustion, but not so dry or windy as to burn more vegetation than intended. These conditions limit the opportunities.

Now, a new study led by UCLA climate scientist Daniel Swain has found that climate change is further reducing the overall number of days and changing the times of year when prescribed fires can be safely used.

Currently, scientists project warming of 2.0 degrees Celsius (3.6 degrees Fahrenheit) by 2060 — a projection Swain called “optimistic” given the current trajectory of even greater warming. Still, these temperatures would reduce the number of days when weather and vegetation conditions favor prescribed fires by 17% on average across the Western U.S.

Gut bacteria found in wild wolves may be key to improving domestic dogs’ health

Photo Credit: Nicky Pe

Gut microbes found in wild wolves may be the key to alleviating a debilitating gastrointestinal condition common to domestic dogs, according to a study led by researchers at Oregon State University – Cascades.

In a paper published in Applied Microbiology, the authors report a novel strain of Paenibacillus bacteria with characteristics of a probiotic – an organism that conveys a health benefit to the host.

In this case, the benefit would be to head off canine inflammatory bowel disease, a chronic illness characterized by vomiting, reduced appetite, weight loss, flatulence, a rumbling stomach and/or abdominal discomfort, said Bruce Seal of OSU-Cascades’ biology program.

“At present there is no known cure for this ongoing dysbiosis of the gastrointestinal tract, and there are limited options for treatment,” Seal said. “Underlying causes of the condition include an animal’s genetics, environmental factors, the immunological state of the GI tract and, maybe most importantly, an altered gut microbiome.”

Bird species changing faster than expected in protected areas

The study compared bird communities during the breeding season inside and outside protected areas in Canada between 1997 and 2019. The results indicated that protected areas remain important for the conservation of northern bird species such as the Lapland longspur, which breeds in Finland as well. However, during the 22-year period, bird communities inside the protected areas began to resemble those outside them in terms of climate requirements. This poses additional challenges for ensuring the continued vitality of species under a warming climate. Communities with similar climate requirements consist of an equal proportion of cold- and warm-dwelling species.

“Protected areas are more effective in helping cold-dwelling northern bird species, but it was surprising to discover that southern species increased faster in abundance inside than outside protected areas,” explains Doctoral Researcher Leena Hintsanen of the Finnish Museum of Natural History (Luomus) under the University of Helsinki.

Monday, October 2, 2023

DNA from discarded whale bones suggests loss of genetic diversity due to commercial whaling

Abandoned whaling stations on South Georgia Island
Photo Credit: Courtesy of Oregon State University

Commercial whaling in the 20th century decimated populations of large whales but also appears to have had a lasting impact on the genetic diversity of today’s surviving whales, new research from Oregon State University shows.

Researchers compared DNA from a collection of whale bones found on beaches near abandoned whaling stations on South Georgia Island in the south Atlantic Ocean to DNA from whales in the present-day population and found strong evidence of loss of maternal DNA lineages among blue and humpback whales.

“A maternal lineage is often associated with an animal’s cultural memories such as feeding and breeding locations that are passed from one generation to the next,” said the study’s lead author, Angela Sremba, who conducted the research as part of her doctoral studies at Oregon State University’s Marine Mammal Institute. “If a maternal lineage is lost, that knowledge is likely also lost.”

The findings were published recently in the Journal of Heredity.

Morphing robots designed at CSU can grip, climb and crawl like insects

Pulling inspiration from the natural world, researchers at Colorado State University have developed a trio of robots that can morph their bodies and legs as needed.
Video Credit: Colorado State University

Pulling inspiration from the natural world, researchers at Colorado State University have developed a trio of robots that can morph their bodies and legs as needed to better crawl, shimmy or swim over difficult terrain.  These new robotic systems are designed to mimic the way biological organisms adapt their shape depending on their life cycle or environment and were developed by a team from the Department of Mechanical Engineering. The work is described in a new paper published in Nature Communications which outlines the three robotic types and their different abilities including gripping, climbing and amphibious travel.

Associate Professor Jianguo Zhao led the research team on campus in the Department of Mechanical Engineering with recent Ph.D. graduate Jiefeng Sun serving as lead author for the paper. Zhao said these robots are made of materials that can become soft or rigid with changes in temperature and are able to move without the need for bulky power systems such as magnetic coils. That makes them more versatile and better equipped to potentially help humans search tight disaster areas for survivors in the future.

SwRI scientists use Webb, Sofia telescopes to observe metallic asteroid

Southwest Research Institute scientists are using telescopes to observe the Psyche asteroid in the infrared, providing context for the upcoming NASA spacecraft mission.
Illustration Credit: NASA/JPL-Caltech/ASU

Southwest Research Institute scientists are using telescopes to observe the asteroid Psyche in the infrared, providing context for NASA’s upcoming Psyche mission. Dr. Stephanie Jarmak is using the James Webb Space Telescope (JWST) to look for water signatures on the metallic surface of Psyche, while Dr. Anicia Arredondo is using some of the last data collected by the Stratospheric Observatory for Infrared Astronomy, or SOFIA, to study differences in Psyche’s composition at different points on its surface. 

At about 140 miles in diameter, Psyche is one of the most massive objects in the main asteroid belt orbiting between Mars and Jupiter. Previous observations indicate that Psyche is a dense, largely metallic object thought to be the leftover core from a failed planet. On October 5, NASA is scheduled to launch the Psyche spacecraft, which will travel 2.2 billion miles and arrive at the asteroid in August 2029.

“Using telescopes at different infrared wavelengths of light, the SwRI-led research will provide different but complementary information to what the Psyche spacecraft is designed to study,” said Dr. Tracy Becker, a group leader in SwRI’s Space Science Division.

Scientists Investigate Grand Canyon's Ancient Past to Predict Future Climate Impacts

The Grand Canyon is known as one of the Seven Natural Wonders of the World.
Photo Credit: Courtesy of Matthew Lachniet

The Grand Canyon’s valleys and millions of years of rock layers spanning Earth’s history have earned it a designation as one of the Seven Natural Wonders of the World. But, according to a new UNLV study, its marvels extend to vast cave systems that lie beneath the surface, which just might hold clues to better understand the future of climate change — by studying nature’s past.

A research team — led by UNLV paleoclimatologist and professor Matthew Lachniet — pulled an ancient stalagmite from the floor of an undisturbed Grand Canyon cave. By studying the mineral deposits’ geochemistry, they were able to analyze precipitation patterns during the rapidly warming period following the last Ice Age to improve understanding about the potential impact of future climate change on summer monsoon rains in the U.S. Southwest and northwestern Mexico.

‘Impossible’ Millimeter Wave Sensor Has Wide Potential

This prototype millimeter-wave radar sensor developed at UC Davis is capable of measuring extremely small vibrations and movements while being energy-efficient and cheap to produce.
Photo Credit: Omeed Momeni/University of California, Davis

Researchers at the University of California, Davis, have developed a proof-of-concept sensor that may usher in a new era for millimeter wave radars. In fact, they call its design a “mission impossible” made possible.

Millimeter wave radars send fast-moving electromagnetic waves to targets to analyze their movement, position and speed from the waves bounced back. The benefits of millimeter waves are their natural sensitivity to small-scale movements and their ability to focus on and sense data from microscopic objects.

The new sensor uses an innovative millimeter wave radar design to detect vibrations a thousand times smaller, and changes in a target’s position one hundred times smaller, than a strand of human hair, making it better or on par with the world’s most accurate sensors. Yet unlike its peers, this one is the size of a sesame seed, is cheap to produce and features a long battery life.

Professor Omeed Momeni and his lab in the Department of Electrical and Computer Engineering led the effort. It is part of an ongoing project funded by the Foundation for Food & Agriculture Research, or FFAR, to develop a low-cost sensor capable of tracking the water status of individual plants. This new radar is the necessary steppingstone that proves it is possible. The work is published in the September 2023 issue of IEEE Journal of Solid-State Circuits.

Discrimination alters brain-gut ‘crosstalk,’ prompting poor food choices and increased health risks

Illustration Credit: julientromeur

People frequently exposed to racial or ethnic discrimination may be more susceptible to obesity and related health risks in part because of a stress response that changes biological processes and how we process food cues. These are findings from UCLA researchers conducting what is believed to be the first study directly examining effects of discrimination on responses to different types of food as influenced by the brain-gut-microbiome (BGM) system.

The changes appear to increase activation in regions of the brain associated with reward and self-indulgence – like seeking “feel-good” sensations from “comfort foods” – while decreasing activity in areas involved in decision making and self-control.

“We examined complex relationships between self-reported discrimination exposure and poor food choices, and we can see these processes lead to increased cravings for unhealthy foods, especially sweet foods, but also manifested as alterations in the bidirectional communication between the brain and the gut microbiome,” said Arpana Gupta, PhD, a researcher and co-director of the UCLA Goodman-Luskin Microbiome Center and the UCLA G. Oppenheimer Center for Neurobiology of Stress and Resilience.

Climate and human land use both play roles in Pacific island wildfires past and present

SMU fire scientist Christopher Roos
Photo Credit: Courtesy of  Southern Methodist University

It’s long been understood that human settlement contributes to conditions that make Pacific Islands more susceptible to wildfires, such as the devastating Aug. 8 event that destroyed the Maui community of Lahaina. But a new study from SMU fire scientist Christopher Roos published in the journal Nature Ecology & Evolution shows that climate is an undervalued part of the equation.

Roos, SMU environmental archaeologist and professor of anthropology, traveled with his team to the Sigatoka River valley in southwestern Fiji in 2013, where they collected charcoal and stable carbon isotopes from deep soil cores to understand historic patterns of fire activity in the area. Different plants have distinct carbon isotopic signatures, which can provide information about past plant communities.

The team found fires and fire-created grassy areas that predate human settlement by millennia and actively corresponded to droughts likely driven by a regularly occurring weather pattern known as El Niño. El Niño events can alter precipitation patterns worldwide, making environmental conditions more favorable for wildfires. The National Oceanic and Atmospheric Administration issued an El Niño advisory in June, announcing the latest arrival of the climate event that continues to influence weather worldwide.

Genetics of Attraction: Mate Choice in Fruit Flies

The fruit fly Drosophila melanogaster is a common model organism for studying sexual selection and evolution.
Photo Credit: Stefan Lüpold, UZH

Genetic quality or genetic compatibility? What do female fruit flies prioritize when mating? Researchers at the University of Zurich show that both factors are important at different stages of the reproductive process and that females use targeted strategies to optimize the fitness of their offspring.

Breeding female fruit flies face a difficult decision: do they mate with the male that has the best genes, or with the one whose genes best match their own? Evolutionary biologists from the University of Zurich and Concordia University have now investigated this question, because, as UZH professor Stefan Lüpold explains, “the processes underlying mate choice influence the evolution of male sexual characteristics and thus the variation within a population – not only in flies”.

Heavily mutated SARS-CoV-2 variant BA.2.86 not as resistant to antibodies as first feared

Image Credit: Fusion Medical Animation

Researchers at Karolinska Institutet who studied SARS-CoV-2 variant BA.2.86, found that the new variant was not significantly more resistant to antibodies than several other variants that are circulating. The study also showed that antibody levels to BA.2.86 were significantly higher after a wave of XBB infections compared to before, suggesting that the vaccines based on XBB should provide some cross-protection to BA.2.86.

"We engineered a spike gene that matches that of the BA.2.86 variant and tested the blood of Stockholm blood donors (specifically those donations made very recently) to see how effective their antibodies are against this new variant. We found that although BA.2.86 was quite resistant to neutralizing antibodies, it wasn't significantly more resistant than a number of other variants that are also circulating", says Daniel Sheward, lead author of the study and Postdoctoral researcher in Benjamin Murrell's team at the Department of Microbiology, Tumor and Cell Biology at Karolinska Institutet.

Dense Measurement Network Links Air Pollution and Common Agricultural Practice

Photo Credit: Yiğit KARAALİOĞLU

A group of international collaborators led by the Research Institute for Humanity and Nature (RIHN) team performed the first quantitative study of air pollution in the northwestern region of India using 29 low-cost and reliable instruments. Their study demonstrated the benefits of source region observations to link crop residue burning (CRB) and air pollution at local to regional scales.

Exposure to particulate matter less than 2.5 µm in diameter (popularly known as PM2.5) poses health hazards in cities worldwide. Although the major sources of PM2.5 are industrial, certain agricultural practices also contribute to the emission and formation of fine particles during certain seasons. CRB, a common practice in Punjab, Haryana and part of Indo-Gangetic Plain, occurs immediately after the paddy harvest in the post-monsoon period (September-November). CRB activities have increased in the past two decades partly due to rise in mechanized agriculture in the 1990s and delayed rice planting in Punjab and Haryana following the Preservation of Subsoil Water Act (2009).

Since 2010, the effects of CRB in Punjab and Haryana on the Delhi and its surrounding area (known as the national capital region - NCR) have been in the spotlight. Yet, no measurements of PM2.5 in the source regions have been conducted. To rectify this, a group of researchers conducted an intensive field campaign involving the states of Punjab, Haryana and the NCR from September 1 to November 30, 2022, using 29 Compact and Useful PM2.5 Instruments with Gas sensors (CUPI-Gs).

New material discovery could revolutionize rollout of global vaccinations

Photo Credit: RF._.studio

New raw vaccine materials that could make vaccines more accessible, sustainable, and ethical have been discovered.

Adjuvants are vaccine ingredients that boost a person’s immune response to a vaccine, providing greater protection against disease. One of the most prevalent adjuvant materials used in vaccines is squalene, which is typically sourced from shark livers.

Researchers at the University of Nottingham collaborated with the Access to Advanced Health Institute (AAHI) to identify synthetic alternatives to squalene that ensure sustainable, reliable, and ethical sourcing of adjuvant raw materials for vaccines moving forward.

New synthetic adjuvant materials were developed from commercially available methacrylate monomers, ensuring that a reliable supply of the material is continually available.

The combination of these adjuvant materials is scalable through catalytic chain transfer polymerization, a process that allows high levels of control over the molecular weight of the product polymer. Controlling the molecular weight is key to the use of adjuvant material in formulations for vaccines as it allows for purification in the manufacturing process and optimizes biological responses following immunization.

Friday, September 29, 2023

Ancient plant wax reveals how global warming affects methane in Arctic lakes

A 2014 field photo from Wax Lips Lake on northwest Greenland with the Greenland Ice Sheet in the background and three of the study authors (Jamie McFarlin, Everett Lasher, Yarrow Axford).
Photo Credit: Alex P. Taylor

By studying fossils from ancient aquatic plants, Northwestern University and University of Wyoming (UW) researchers are gaining a better understanding of how methane produced in Arctic lakes might affect — and be affected by — climate change.

In a new study, the researchers examined the waxy coatings of leaves preserved as organic molecules within sediment from the early-to-middle Holocene, a period of intense warming that occurred due to slow changes in Earth’s orbit 11,700 to 4,200 years ago. These wax biomarkers — which were once a part of common aquatic brown mosses — were preserved in sediment buried beneath four lakes in Greenland.

Monitoring changes in methane levels

By studying these biomarkers, the researchers discovered that past warming during the middle Holocene caused lakes across a wide range of Greenland’s climates to generate methane. Because methane is a more potent greenhouse gas than carbon dioxide, any changes in methane production with warming are important to understand.

New study shows signs of early creation of modern human identities

SapienCE researchers have publiched a new study which provides vital information about how and when we may have started developing modern human identities. Image showing excavation at Blombos Cave, South Africa.
Full Size Image
Resized Image using AI by SFLORG
Photo Credit: UiB, SapienCE

The study, which is newly published in the Journal of Human Evolution, confirms previous scant evidence, and supports a multistep evolutionary scenario for the culturalization of the human body.

Eye-catching shells made into ornaments

The new study is conducted by Francesco d'Errico, Karen Loise van Niekerk, Lila Geis and Christopher Stuart Henshilwood. The significant findings provide vital information about how and when we may have started developing modern human identities.

“The discovery of eye-catching unmodified shells with natural holes from 100 to 73 ka confirms previous scant evidence that marine shells were collected, taken to the site and, in some cases, perhaps worn as personal ornaments before a stage in which shells belonging to selected species were systematically, and intentionally perforated with suitable techniques to create composite beadworks”, van Niekerk says.

Similar shells have been found in North Africa, other sites in South Africa and the Mediterranean Levant, which means that the argument is supported by evidence from other sites, not just Blombos Cave.

Small but mighty new gene editor

Structural analysis and deep mutational scanning (DMS) of AsCas12f. The team used cryogenic electron microscopy, a method to look at the structure of biological molecules in high-resolution, to analyze AsCas12f and engineer their new version. The DMS “heatmap” illustrates how all single mutations affected genome-editing activity. Blue squares indicate an undesirable mutation, while red ones represent desirable changes. The darker the color, the greater the effect.
Illustration Credit: © Hino et al. 2023

A new CRISPR-based gene-editing tool has been developed which could lead to better treatments for patients with genetic disorders. The tool is an enzyme, AsCas12f, which has been modified to offer the same effectiveness but at one-third the size of the Cas9 enzyme commonly used for gene editing. The compact size means that more of it can be packed into carrier viruses and delivered into living cells, making it more efficient. Researchers created a library of possible AsCas12f mutations and then combined selected ones to engineer an AsCas12f enzyme with 10 times more editing ability than the original unmutated type. This engineered AsCas12f has already been successfully tested in mice and has the potential to be used for new, more effective treatments for patients in the future.

By now you have probably heard of CRISPR, the gene-editing tool which enables researchers to replace and alter segments of DNA. Like genetic tailors, scientists have been experimenting with “snipping away” the genes that make mosquitoes malaria carriers, altering food crops to be more nutritious and delicious, and in recent years begun human trials to overcome some of the most challenging diseases and genetic disorders. The potential of CRISPR to improve our lives is so phenomenal that in 2020, researchers Jennifer Doudna and Emmanuelle Charpentier, who developed the most precise version of the tool named CRISPR-Cas9, were awarded the Nobel Prize in chemistry.

A lethal parasite’s secret weapon: infecting non-immune cells

Photomicrograph of spleen tissue showing the presence of numerous Leishmania donovani parasites in the amastigote form they take after infecting a host.
Image Credit: Centers for Disease Control and Prevention

The organisms that cause visceral leishmaniasis, a potentially deadly version of the parasitic disease that most often affects the skin to cause disfiguring disease, appear to have a secret weapon, new research suggests: They can infect non-immune cells and persist in those uncommon environments. 

Researchers found the Leishmania donovani parasites in blood-related stem cells in the bone marrow of chronically infected mice – precursor cells that can regenerate all types of cells in the blood-forming system. The finding may help explain why some people who develop visceral leishmaniasis, which is fatal if left untreated, often also have blood disorders such as anemia. 

Identifying these cells and other unexpected locations in which these parasites live improve scientists’ understanding of the disease and may lead to new treatment options, said senior study author Abhay Satoskar, professor of pathology in The Ohio State University College of Medicine. 

A new bioinfomatics pipeline solves a 50-year-old blood group puzzle

Photo Credit: Belova59

Currently, a lot is known about which genes are responsible for our individual blood groups, however not much is understood about how and why the levels of the blood group molecules differ between one person to another. This can be important for blood transfusion safety. Now a research group at Lund University in Sweden has developed a toolbox that finds the answer – and in doing so, has solved a 50-year-old mystery.

The study was published recently in Nature Communications.

For the past 30 years, the research group in Lund has studied the genetic basis of our many blood groups and their research has laid the foundation for six new blood group systems. On the surface of the red blood cell are found proteins and carbohydrates that are very similar between people.

However, small differences in these molecules have been shown to be due to genetic variants that encode what we know as blood group antigens. What has not been understood until now is why people with the same blood group can have different amounts of a certain blood group antigen on their red blood cells.

Study shows that Basophil Activation Test (BAT) is key for predicting allergic reactions

Photo Credit: Jakub Kapusnak

Researchers have found that BAT was the best biomarker to predict severity and threshold of allergic reactions to eggs

New research, published in the European Journal of Allergy and Clinical Immunology, has found that Basophil Activation Test (BAT) can be used to better detect allergies and predict the severity of allergic reactions than traditional predictions made via clinical criteria.

The MRC-funded Basophil Activation Test to Diagnose Food Allergy (BAT2) Study, led by Professor Alexandra Santos of King’s College London, aimed to identify if BAT testing could be used to predict the risk of severe allergic reactions and/or low threshold of reactivity.

For the study one hundred and fifty children, recruited from specialized tertiary Pediatric Allergy clinics in London, underwent double-blind placebo-controlled food challenge to determine possible allergies to baked egg. Patients who passed this underwent a similar process but this time with loosely cooked egg, with the severity of allergic reactions classified following Practall guidelines.

Intense Lasers Shine new Light on the Electron Dynamics of Liquids

An intense laser pulse (in red) hits a flow of water molecules, inducing an ultrafast dynamics of the electrons in the liquid.
Illustration Credit: ©J. Harms, MPSD

The behavior of electrons in liquids plays a big role in many chemical processes that are important for living things and the world in general. For example, slow electrons in liquid have the capacity to cause disruptions in the DNA strand.

But electron movements are extremely hard to capture because they take place within attoseconds: the realm of quintillionths of a second. Since advanced lasers now operate at these timescales, they can offer scientists glimpses of these ultrafast processes via a range of techniques.

An international team of researchers has now demonstrated that it is possible to probe electron dynamics in liquids using intense laser fields and to retrieve the electron's mean free path - the average distance an electron can travel before colliding with another particle.

"We found that the mechanism by which liquids emit a particular light spectrum, known as the high-harmonic spectrum, is markedly different from the ones in other phases of matter like gases and solids," said Zhong Yin from Tohoku University's International Center for Synchrotron Radiation Innovation Smart (SRIS) and co-first author of the paper. "Our findings open the door to a deeper understanding of ultrafast dynamics in liquids."

Good news for the world’s rarest marine dolphin?

Māui dolphins.
Photo Credit: University of Auckland/Department of Conservation

The tiny population – only about 54 Māui dolphins remain – lives off the west coast of the North Island.

Once seen from Cook Strait to north of Kaipara, the dolphins’ range is now considerably smaller, with most sightings between Muriwai and Raglan.

The creatures' median age dropped by about a year over the course of a decade, according to research from the University of Auckland – Waipapa Taumata Rau, Oregon State University and University of California Los Angeles.

It could be good news: a population with younger dolphins will produce more calves than an older population, ultimately increasing the population size, which is vital for the dolphins' future.

“The population may be getting younger because individuals born after 2008, the year a marine sanctuary was introduced off the west coast of the North Island, have better chances of survival, since they are less likely to be accidentally caught in fishing nets,” suggests Professor Rochelle Constantine.

However, it’s also possible that older dolphins aren’t living to expected maximum ages of about 20 years.

Featured Article

Listening to atoms moving at the nanoscale

Professor Jan Seidel and his research lab have been using specialised techniques to listen to atoms moving. Photo Credit: UNSW FLEET Centre....

Top Viewed Articles