. Scientific Frontline: Nanotechnology
Showing posts with label Nanotechnology. Show all posts
Showing posts with label Nanotechnology. Show all posts

Thursday, April 4, 2024

The Rotisserie-Inspired Device That Could Revolutionize Cancer Surgery

The Zavaleta Lab’S Raman Rotisserie Device Creates a Map of the Surface of a Resected Tumor to Aid Surgeons in the Operating Room.
Photo Credit: Alex Czaja

Like many Texans, Cristina Zavaleta grew up enjoying the culinary delights of the state’s famous smokehouse BBQs. She couldn’t have imagined that those humble rotisseries of her childhood would one day inspire a game-changing device for the operating room that could help surgeons prevent tumor recurrence.

On a team excursion to Disneyland, the WiSE Gabilan Assistant Professor of Biomedical Engineering and her students were reminded of rotisseries when they encountered a food vendor at the Star Wars-themed land, Galaxy’s Edge. It was a lightbulb moment. The rotisserie configuration was a perfect way of intricately scanning excised tumors, with the help of the Zaveleta Lab’s unique nanoparticles, to light up where the cancerous tissue may not have been entirely removed from the patient. Surgeons could then be guided to precisely remove the remaining tumor, all while the patient is still under anesthesia. The result would reduce the need for traumatic repeat surgeries and potential cancer recurrence and metastasis.

Zavaleta and her team built the device, which they dubbed the Raman Rotisserie. It physically rotates a tumor specimen and works in conjunction with an imaging technique known as Raman spectroscopy, which scans the surface of the excised tumor. Their research, which aims to improve the success rate of breast cancer lumpectomies, has now been published in NPJ Imaging.

Saturday, March 30, 2024

Purdue researchers create biocompatible nanoparticles to enhance systemic delivery of cancer immunotherapy

Purdue University researchers are developing and validating patent-pending nanoparticles (left) to enhance immunotherapy effects against tumors. The nanoparticles are modified with adenosine triphosphate, or ATP, to recruit dendritic cells (right), which are immune cells that recognize tumor antigens and bring specialized immune cells to fight off tumors.
Image Credit: Yoon Yeo

Purdue University researchers are developing and validating patent-pending poly (lactic-co-glycolic acid), or PLGA, nanoparticles modified with adenosine triphosphate, or ATP, to enhance immunotherapy effects against malignant tumors.

The nanoparticles slowly release drugs that induce immunogenic cell death, or ICD, in tumors. ICD generates tumor antigens and other molecules to bring immune cells to a tumor’s microenvironment. The researchers have attached ATP to the nanoparticles, which also recruits immune cells to the tumor to initiate anti-tumor immune responses. 

Yoon Yeo leads a team of researchers from the College of Pharmacy, the Metabolite Profiling Facility in the Bindley Bioscience Center, and the Purdue Institute for Cancer Research to develop the nanoparticles. Yeo is the associate department head and Lillian Barboul Thomas Professor of Industrial and Molecular Pharmaceutics and Biomedical Engineering; she is also a member of the Purdue Institute for Drug Discovery and the Purdue Institute for Cancer Research.

The researchers validated their work using paclitaxel, a chemotherapy drug used to treat several types of cancers. They found that tumors grew slower in mice treated with paclitaxel enclosed within ATP-modified nanoparticles than in mice treated with paclitaxel in non-modified nanoparticles.

“When combined with an existing immunotherapy drug, the ATP-modified, paclitaxel-loaded nanoparticles eliminated tumors in mice and protected them from rechallenge with tumor cells,” Yeo said.

Friday, March 29, 2024

Liquid crystal nanoparticles supercharge antibiotics for cystic fibrosis

Image Credit: Copilot Dall E-3 AI generated

Cystic fibrosis is the most common, life-limiting genetic condition in Australia. It affects the lungs, digestive system, and reproductive system, producing excess mucus, infections, and blockages.

Now, thanks to a $500,000 grant from Brandon BioCatalyst's CUREator incubator, through their CSIRO-funded Minimizing Antimicrobial Resistance Stream, University of South Australia researchers are advancing the development of liquid crystal nanoparticle-formulated antibiotics to more accurately target and eliminate difficult-to-cure lung infections in people with cystic fibrosis.

Funded by the Medical Research Future Fund CUREator provides grant funding to support the development of Australian biomedical research and innovations.

The study will use a patent-protected platform technology, invented by UniSA’s Centre for Pharmaceutical Innovation to establish new therapies for cystic fibrosis sufferers. UniSA will also work with the Cystic Fibrosis Airways Research Group at the Women’s and Children’s Hospital to advance the platform.

Thursday, March 28, 2024

New Method Developed to Isolate HIV Particles

The image shows PNF-coated magnetic microbeads that bind HIV particles to their surface.
Image Credit: Torsten John

Researchers at Leipzig University and Ulm University have developed a new method to isolate HIV from samples more easily, potentially making it easier to detect infection with the virus. They focus on peptide nanofibrils (PNFs) on magnetic microparticles, a promising tool and hybrid material for targeted binding and separation of viral particles. They have published their new findings in the journal Advanced Functional Materials.

“The presented method makes it possible to efficiently capture, isolate and concentrate virus particles, which may improve the sensitivity of existing diagnostic tools and analytical tests,” says Professor Bernd Abel of the Institute of Technical Chemistry at Leipzig University. The nanofibrils used – small, needle-like structures – are based on the EF-C peptide, which was first described in 2013 by Professor Jan Münch from Ulm University and Ulm University Medical Center. EF-C is a peptide consisting of twelve amino acids that forms nanoscale fibrils almost instantaneously when dissolved in polar solvents. These can also be applied to magnetic particles. “Using the EF-C peptide as an example, our work shows how peptide fibrils on magnetic particles can have a completely new functionality – the more or less selective binding of viruses. Originally, fibrils of this kind were more likely to be associated with neurodegenerative diseases,” adds Dr Torsten John, co-first author of the study and former doctoral researcher under Professor Abel at Leipzig University. He is now a junior researcher at the Max Planck Institute for Polymer Research in Mainz, Germany.

New Nanoceramics Could Help Improve Smartphone and TV Displays

Nanoceramics are strong because they are made under high pressure.
Photo Credit: Anna Marinovich

Scientists from the Ural Federal University, together with colleagues from India and the Ural Branch of the Russian Academy of Sciences, have developed a nanoceramic that glows in three main colors - red, green, and blue. The new material is extremely strong because it is created under high pressure. Scientists believe that the characteristics of the new nanoceramics - luminescence, strength, and transparency - will be useful for creating screens with improved brightness and detail for smartphones, televisions, and other devices. The scientists published detailed information about the new nanoceramics and their properties in the journal Applied Materials Today

"We obtained optically transparent nanoceramics capable of luminescing in red, green, and blue colors. This was made possible by adding carbon particles that act as carbon nanodots. During the synthesis process, the carbon components are encapsulated between the ceramic particles, creating defects on their surface. We believe that these defects create several energy levels in the carbon nanodots, allowing the material to glow in different colors in the visible spectrum", explains Arseny Kiryakov, the co-author of the work, Associate Professor of the UrFU Department of Physical Techniques and Devices for Quality Control.

A Tiny Spot Leads to a Large Advancement in Nano-processing, Researchers Reveal

A conceptual illustration of single-shot laser processing by an annular-shaped radially polarized beam, focused on the back surface of a glass plate.
Illustration Credit: ©Y. Kozawa et al.

Focusing a tailored laser beam through transparent glass can create a tiny spot inside the material. Researchers at Tohoku University have reported on a way to use this small spot to improve laser material processing, boosting processing resolution.

Laser machining, like drilling and cutting, is vital in industries such as automotive, semiconductors, and medicine. Ultra-short pulse laser sources, with pulse widths from picoseconds to femtoseconds, enable precise processing at scales ranging from microns to tens of microns. But recent advancements demand even smaller scales, below 100 nanometers, which existing methods struggle to achieve.

The researchers focused on a laser beam with radial polarization, known as a vector beam. This beam generates a longitudinal electric field at the focus, producing a smaller spot than conventional beams.

Scientists have identified this process as promising for laser processing. However, one drawback is that this field weakens inside the material due to light refraction at the air-material interface, limiting its use.

Monday, March 25, 2024

Elusive 3D printed nanoparticles could lead to new shapeshifting materials

Optical images of truncated tetrahedrons forming two large hexagonal grains at an anti-phase boundary (left), and transforming into a quasi-diamond phase that initiated at the anti-phase boundary (right). Scale bars are 25 um.
Image Credit: David Doan & John Kulikowski

Stanford materials engineers have 3D printed tens of thousands of hard-to-manufacture nanoparticles long predicted to yield promising new materials that change form in an instant.

In nanomaterials, shape is destiny. That is, the geometry of the particle in the material defines the physical characteristics of the resulting material.

“A crystal made of nano-ball bearings will arrange themselves differently than a crystal made of nano-dice and these arrangements will produce very different physical properties,” said Wendy Gu, an assistant professor of mechanical engineering at Stanford University, introducing her latest paper which appears in the journal Nature Communications. “We’ve used a 3D nanoprinting technique to produce one of the most promising shapes known – Archimedean truncated tetrahedrons. They are micron-scale tetrahedrons with the tips lopped off.”

In the paper, Gu and her co-authors describe how they nanoprinted tens of thousands of these challenging nanoparticles, stirred them into a solution, and then watched as they self-assembled into various promising crystal structures. More critically, these materials can shift between states in minutes simply by rearranging the particles into new geometric patterns.

This ability to change “phases,” as materials engineers refer to the shapeshifting quality, is similar to the atomic rearrangement that turns iron into tempered steel, or in materials that allow computers to store terabytes of valuable data in digital form.

“If we can learn to control these phase shifts in materials made of these Archimedean truncated tetrahedrons it could lead in many promising engineering directions,” she said.

Tuesday, March 19, 2024

Backyard insect inspires invisibility devices, next gen tech

Brochosomes are hollow, nanoscopic, soccer ball-shaped spheroids with through-holes that are produced by the common backyard insect, the leafhopper. Researchers found that the through-holes of these hollow buckyballs help reduce the reflection of light. This is the first biological example showing short wavelength, low-pass antireflection functionality enabled by through-holes and hollow structures.
Image Credit: Lin Wang and Tak-Sing Wong / Pennsylvania State University
(CC BY-NC-ND 4.0 DEED)

Leafhoppers, a common backyard insect, secrete and coat themselves in tiny mysterious particles that could provide both the inspiration and the instructions for next-generation technology, according to a new study led by Penn State researchers. In a first, the team precisely replicated the complex geometry of these particles, called brochosomes, and elucidated a better understanding of how they absorb both visible and ultraviolet light.

This could allow the development of bioinspired optical materials with possible applications ranging from invisible cloaking devices to coatings to more efficiently harvest solar energy, said Tak-Sing Wong, professor of mechanical engineering and biomedical engineering. Wong led the study, which was published in the Proceedings of the National Academy of Sciences (PNAS).

The unique, tiny particles have an unusual soccer ball-like geometry with cavities, and their exact purpose for the insects has been something of a mystery to scientists since the 1950s. In 2017, Wong led the Penn State research team that was the first to create a basic, synthetic version of brochosomes in an effort to better understand their function.

Rice researchers develop 3D-printed wood from its own natural components

Researchers at Rice University have unlocked the potential to use 3D printing.
Photo Credit: Gustavo Raskosky/Rice University.

Researchers at Rice University have unlocked the potential to use 3D printing to make sustainable wood structures, offering a greener alternative to traditional manufacturing methods.

Wood has historically been marred by wasteful practices generated during shaping processes, driving up costs and environmental impact. Now researchers in materials science and nanoengineering at Rice have developed an additive-free, water-based ink made of lignin and cellulose, the fundamental building blocks of wood. The ink can be used to produce architecturally intricate wood structures via a 3D printing technique known as direct ink writing.

The work was recently published in the journal Science Advances.

“The ability to create a wood structure directly from its own natural components sets the stage for a more eco-friendly and innovative future,” said Muhammad Rahman, an assistant research professor of materials science and nanoengineering at Rice. “It heralds a new era of sustainable 3D-printed wood construction.”

The implications are far-reaching, potentially revolutionizing industries such as furniture and construction.

Monday, March 11, 2024

Tiny Tunable Nanotubes

By wrapping a carbon nanotube with a ribbon-like polymer, Duke researchers were able to create nanotubes that conduct electricity when struck with low-energy light that our eyes cannot see. In the future, the approach could make it possible to optimize semiconductors for applications ranging from night vision to new forms of computing.
Illustration Credit: Francesco Mastrocinque

It might look like a roll of chicken wire, but this tiny cylinder of carbon atoms -- too small to see with the naked eye -- could one day be used for making electronic devices ranging from night vision goggles and motion detectors to more efficient solar cells, thanks to techniques developed by researchers at Duke University.

First discovered in the early 1990s, carbon nanotubes are made from single sheets of carbon atoms rolled up like a straw.

Carbon isn’t exactly a newfangled material. All life on Earth is based on carbon. It’s the same stuff found in diamonds, charcoal, and pencil lead.

What makes carbon nanotubes special are their remarkable properties. These tiny cylinders are stronger than steel, and yet so thin that 50,000 of them would equal the thickness of a human hair.

They’re also amazingly good at conducting electricity and heat, which is why, in the push for faster, smaller, more efficient electronics, carbon nanotubes have long been touted as potential replacements for silicon.

Friday, March 8, 2024

Nanosurgical tool could be key to cancer breakthrough

Electron microscopy image of the nanopipette.
Photo Credit: Dr Alexander Kulak

A nanosurgical tool - about 500 times thinner than a human hair - could give insights into cancer treatment resistance that no other technology has been able to do, according to a new study.

The high-tech double-barrel nanopipette, developed by University of Leeds scientists, and applied to the global medical challenge of cancer, has - for the first time - enabled researchers to see how individual living cancer cells react to treatment and change over time – providing vital understanding that could help doctors develop more effective cancer medication.  

The tool has two nanoscopic needles, meaning it can simultaneously inject and extract a sample from the same cell, expanding its potential uses. And the platform’s high level of semi-automation has sped up the process dramatically, enabling scientists to extract data from many more individual cells, with far greater accuracy and efficiency than previously possible, the study shows. 

Currently, techniques for studying single cells usually destroy them, meaning a cell can be studied either before treatment, or after.  

This device can take a “biopsy” of a living cell repeatedly during exposure to cancer treatment, sampling tiny extracts of its contents without killing it, enabling scientists to observe its reaction over time. 

During the study, the multi-disciplinary team, featuring biologists and engineers, tested cancer cells’ resistance to chemotherapy and radiotherapy using glioblastoma (GBM) - the deadliest form of brain tumor - as a test case, because of its ability to adapt to treatment and survive. 

Tuesday, March 5, 2024

Aluminum nanoparticles make tunable green catalysts

Aaron Bayles is a Rice University doctoral alum, a postdoctoral researcher at the National Renewable Energy Laboratory and a lead author on a paper published in the Proceedings of the National Academy of Sciences.
Photo Credit: Courtesy of Aaron Bayles / Rice University

Catalysts unlock pathways for chemical reactions to unfold at faster and more efficient rates, and the development of new catalytic technologies is a critical part of the green energy transition.

The Rice University lab of nanotechnology pioneer Naomi Halas has uncovered a transformative approach to harnessing the catalytic power of aluminum nanoparticles by annealing them in various gas atmospheres at high temperatures.

According to a study published in the Proceedings of the National Academy of Sciences, Rice researchers and collaborators showed that changing the structure of the oxide layer that coats the particles modifies their catalytic properties, making them a versatile tool that can be tailored to suit the needs of different contexts of use from the production of sustainable fuels to water-based reactions.

“Aluminum is an earth-abundant metal used in many structural and technological applications,” said Aaron Bayles, a Rice doctoral alum who is a lead author on the paper. “All aluminum is coated with a surface oxide, and until now we did not know what the structure of this native oxide layer on the nanoparticles was. This has been a limiting factor preventing the widespread application of aluminum nanoparticles.”

Aluminum nanoparticles absorb and scatter light with remarkable efficiency due to surface plasmon resonance, a phenomenon that describes the collective oscillation of electrons on the metal surface in response to light of specific wavelengths. Like other plasmonic nanoparticles, the aluminum nanocrystal core can function as a nanoscale optical antenna, making it a promising catalyst for light-based reactions.

Wednesday, February 28, 2024

Study unlocks nanoscale secrets for designing next-generation solar cells

A team of MIT researchers and several other institutions has revealed ways to optimize efficiency and better control degradation, by engineering the nanoscale structure of perovskite devices. Team members include Madeleine Laitz, left, and lead author Dane deQuilettes.
Photo Credit: Courtesy of the researchers
(CC BY-NC-ND 4.0 DEED)

Perovskites, a broad class of compounds with a particular kind of crystal structure, have long been seen as a promising alternative or supplement to today’s silicon or cadmium telluride solar panels. They could be far more lightweight and inexpensive, and could be coated onto virtually any substrate, including paper or flexible plastic that could be rolled up for easy transport.

In their efficiency at converting sunlight to electricity, perovskites are becoming comparable to silicon, whose manufacture still requires long, complex, and energy-intensive processes. One big remaining drawback is longevity: They tend to break down in a matter of months to years, while silicon solar panels can last more than two decades. And their efficiency over large module areas still lags behind silicon. Now, a team of researchers at MIT and several other institutions has revealed ways to optimize efficiency and better control degradation, by engineering the nanoscale structure of perovskite devices.

The study reveals new insights on how to make high-efficiency perovskite solar cells, and also provides new directions for engineers working to bring these solar cells to the commercial marketplace. The work is described today in the journal Nature Energy, in a paper by Dane deQuilettes, a recent MIT postdoc who is now co-founder and chief science officer of the MIT spinout Optigon, along with MIT professors Vladimir Bulovic and Moungi Bawendi, and 10 others at MIT and in Washington state, the U.K., and Korea.

“Ten years ago, if you had asked us what would be the ultimate solution to the rapid development of solar technologies, the answer would have been something that works as well as silicon but whose manufacturing is much simpler,” Bulovic says. “And before we knew it, the field of perovskite photovoltaics appeared. They were as efficient as silicon, and they were as easy to paint on as it is to paint on a piece of paper. The result was tremendous excitement in the field.”

Tuesday, February 27, 2024

New quantum entangled material could pave way for ultrathin quantum technologies

Artistic illustration depicts heavy-fermion Kondo matter in a monolayer material.
Illustration Credit: Adolfo Fumega/Aalto University

Researchers reveal the microscopic nature of the quantum entangled state of a new monolayer van der Waals material

Two-dimensional quantum materials provide a unique platform for new quantum technologies, because they offer the flexibility of combining different monolayers featuring radically distinct quantum states. Different two-dimensional materials can provide building blocks with features like superconductivity, magnetism, and topological matter. But so far, creating a monolayer of heavy-fermion Kondo matter – a state of matter dominated by quantum entanglement – has eluded scientists. Now, researchers at Aalto University have shown that it’s theoretically possible for heavy-fermion Kondo matter to appear in a monolayer material, and they’ve described the microscopic interactions that produces its unconventional behavior. These findings were published in Nano Letters.

“Heavy-fermion materials are promising candidates to discover unconventional topological superconductivity, a potential building block for quantum computers robust to noise,” says Adolfo Fumega, the first author of the paper and a post-doctoral researcher at Aalto University.

These materials can feature two phases: one analogous to a conventional magnet, and one where the state of the system is dominated by quantum entanglement, known as the heavy-fermion Kondo state. At the transition between the magnetic phase and the heavy-fermion state, macroscopic quantum fluctuations appear, leading to exotic states of matter including unconventional superconducting phases.

Thursday, February 15, 2024

Innovative materials to combat bacteria

Three bacteria from the ESKAPE group: Staphylococcus aureus (yellow), Pseudomonas aeruginosa (short thick blue rods) and Escherichia coli (long blue rods).
Image Credit: © UNIGE

While crucial to biotechnology, bacteria can also cause severe disease, exacerbated by their increasing resistance to antibiotics. This duality between economic benefits and infectious risks underlines the importance of finding ways to control their development. A team at the University of Geneva (UNIGE) is currently developing a new generation of bactericidal alloys, with a wide range of industrial applications. They could be used to treat the contact surfaces responsible for their transmission. The project, which is supported by Innosuisse, will take 18 months to complete.

Resistance to antimicrobial drugs - such as antibiotics and antivirals - is a global public health issue. According to the World Health Organization (WHO), it is currently responsible for 700,000 deaths a year worldwide. If no action is taken, the number of deaths will rise to 10 million a year by 2050, with dramatic consequences for public health and the economy.

To promote and guide research in this field, the WHO has published a list of pathogens that should be targeted as a matter of priority, because they are particularly threatening to human health. The list includes Staphylococcus aureus and E. coli bacteria, which are associated with the most common hospital-acquired infections, as well as salmonella. Contaminated contact surfaces (utensils, handles, stair railings) play a fundamental role in their transmission.

Monday, February 12, 2024

Artificial cartilage with the help of 3D printing

The spheroids in which living cells are grown, can be assembled into almost any shape.
Image Credit: Technische Universität Wien

A new approach to producing artificial tissue has been developed at TU Wien: Cells are grown in microstructures created in a 3D printer.

Is it possible to grow tissue in the laboratory, for example to replace injured cartilage? At TU Wien (Vienna), an important step has now been taken towards creating replacement tissue in the lab - using a technique that differs significantly from other methods used around the world.

A special high-resolution 3D printing process is used to create tiny, porous spheres made of biocompatible and degradable plastic, which are then colonized with cells. These spheroids can then be arranged in any geometry, and the cells of the different units combine seamlessly to form a uniform, living tissue. Cartilage tissue, with which the concept has now been demonstrated at TU Wien, was previously considered particularly challenging in this respect.

Thursday, December 21, 2023

New brain-like transistor mimics human intelligence

An artistic interpretation of brain-like computing.
Illustration Credit: Xiaodong Yan/Northwestern University

Taking inspiration from the human brain, researchers have developed a new synaptic transistor capable of higher-level thinking.

Designed by researchers at Northwestern University, Boston College and the Massachusetts Institute of Technology (MIT), the device simultaneously processes and stores information just like the human brain. In new experiments, the researchers demonstrated that the transistor goes beyond simple machine-learning tasks to categorize data and is capable of performing associative learning.

Although previous studies have leveraged similar strategies to develop brain-like computing devices, those transistors cannot function outside cryogenic temperatures. The new device, by contrast, is stable at room temperatures. It also operates at fast speeds, consumes very little energy and retains stored information even when power is removed, making it ideal for real-world applications.

“The brain has a fundamentally different architecture than a digital computer,” said Northwestern’s Mark C. Hersam, who co-led the research. “In a digital computer, data moves back and forth between a microprocessor and memory, which consumes a lot of energy and creates a bottleneck when attempting to perform multiple tasks at the same time. On the other hand, in the brain, memory and information processing are co-located and fully integrated, resulting in orders of magnitude higher energy efficiency. Our synaptic transistor similarly achieves concurrent memory and information processing functionality to more faithfully mimic the brain.”

Monday, December 18, 2023

For this emergent class of materials, ‘solutions are the problem’

Alec Ajnsztajn (left) and Jeremy Daum
Photo Credit: Gustavo Raskosky/Rice University

Rice University materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

“What makes these structures so special is that they are polymers but they arrange themselves in an ordered, repeating structure that makes it a crystal,” said Jeremy Daum, a Rice doctoral student and lead author of a study published in ACS Nano. “These structures look a bit like chicken wire ⎯ they’re hexagonal lattices that repeat themselves on a two-dimensional plane, and then they stack on top of themselves, and that’s how you get a layered 2D material.”

Alec Ajnsztajn, a Rice doctoral alumnus and the study’s other lead author, said the synthesis technique makes it possible to produce ordered 2D crystalline COFs in record time using vapor deposition.

“A lot of times when you make COFs through solution processing, there’s no alignment on the film,” Ajnsztajn said. “This synthesis technique allows us to control the sheet orientation, ensuring that pores are aligned, which is what you want if you’re creating a membrane.”

Friday, December 15, 2023

Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices

Ultrafast Laser Lab.
Photo Credit: KU Marketing Communications

Research appearing in ACS Nano, a premier journal on nanoscience and nanotechnology, reveals the ballistic movement of electrons in graphene in real time.

The observations, made at the University of Kansas’ Ultrafast Laser Lab, could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.

“Generally, electron movement is interrupted by collisions with other particles in solids,” said lead author Ryan Scott, a doctoral student in KU’s Department of Physics & Astronomy. “This is similar to someone running in a ballroom full of dancers. These collisions are rather frequent — about 10 to 100 billion times per second. They slow down the electrons, cause energy loss and generate unwanted heat. Without collisions, an electron would move uninterrupted within a solid, similar to cars on a freeway or ballistic missiles through air. We refer to this as ‘ballistic transport.’”

Scott performed the lab experiments under the mentorship of Hui Zhao, professor of physics & astronomy at KU. They were joined in the work by former KU doctoral student Pavel Valencia-Acuna, now a postdoctoral researcher at the Northwest Pacific National Laboratory.

Zhao said electronic devices utilizing ballistic transport could potentially be faster, more powerful and more energy efficient.

Wednesday, December 13, 2023

The 'one-pot' nanosheet method catalyzing a green energy revolution

Illustration Credit: Minoru Osada

A research group from the Institute for Future Materials and Systems at Nagoya University in Japan has developed a new “one-pot” method to make nanosheets using less rare metals. Their discovery should allow for the energy-making process to be more eco-friendly. The journal ACS Nano published the study.

Producing clean energy is important because it helps reduce global warming and contributes to building a carbon-neutral society. A potential source of clean energy uses hydrogen catalysts, such as palladium (Pd). Industries use Pd in electrolysis to separate water into hydrogen and oxygen. Afterward, the hydrogen in fuel cells is used to create electricity. The only byproduct is water. 

Pd is commonly used in a spherical ‘nanoparticle’ form for catalyst use. However, a flatter, thinner surface would use fewer precious metals and increase the available surface area for the reaction.

Minoru Osada at Nagoya University and his research group have developed a new way to make Pd nanosheets. They named it the "one-pot method" because it can be done in a single glass bottle. The resulting sheets were so thin (1~2 nm) that they can be compared to the size of a single molecule or DNA strand.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles