Conditions can get rough in the micro- and nanoworld. To ensure that e.g. nutrients can still be optimally transported within cells, the minuscule transporters involved need to respond to the fluctuating environment. Physicists at Heinrich Heine University Düsseldorf (HHU) and Tel Aviv University in Israel have used model calculations to examine how this can succeed. They have now published their results – which could also be relevant for future microscopic machines – in the scientific journal Nature Communications.
When planning an ocean crossing, sailors seek a course, which makes optimum use of favorable wind and ocean currents, and maneuver to save time and energy. They also react to random fluctuations in wind and currents and take advantage of fair winds and waves. Such considerations regarding energy costs are also important for transport processes at the micro- and nanoscale. For example, molecular motors should use as little energy as possible when transporting nutrients from A to B between and within biological cells.


.jpg)

_MoreDetail-v3_x2_1080x720.jpg)


_1.jpg)


.jpg)
