. Scientific Frontline: Genetics
Showing posts with label Genetics. Show all posts
Showing posts with label Genetics. Show all posts

Thursday, February 5, 2026

What Is: mRNA

The Genetic Messenger
Messenger RNA (mRNA) serves as the vital intermediary in the "central dogma" of molecular biology, bridging the gap between stable genomic DNA and the production of functional proteins. Acting as a transient transcript, mRNA carries specific genetic instructions from the cell nucleus to the ribosome, where the code is translated into precise amino acid sequences. By providing a temporary, programmable blueprint for cellular machinery, mRNA enables the dynamic regulation of life’s essential processes and stands as a cornerstone of modern biotechnological innovation.

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: Messenger RNA (mRNA) acts as a transient biological intermediary that conveys specific genetic instructions from cellular DNA to ribosomes, serving as a programmable blueprint for the synthesis of functional proteins.

Key Distinction/Mechanism: Unlike traditional pharmaceuticals that deliver the "hardware" (such as small molecule inhibitors or recombinant proteins), mRNA therapeutics deliver the "software" (genetic code), instructing the patient's own cells to manufacture the therapeutic agent. This process is inherently transient; the molecule degrades naturally without integrating into the host genome, eliminating the risk of insertional mutagenesis associated with DNA-based gene therapies.

Wednesday, February 4, 2026

Changes in brain energy and blood vessels linked to CADASIL

Photo Credit: Liza Simonsson.

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: CADASIL is a hereditary condition caused by NOTCH3 gene variants that degenerate vascular smooth muscle cells, leading to strokes, white matter changes, and cognitive decline.

Key Distinction/Mechanism: Unlike general vascular descriptions, new research identifies a specific molecular cascade where small vessel pathology disrupts mitochondrial function and energy production in the hippocampus. This leads to impaired gamma oscillations—brain rhythms essential for memory—and triggers inflammatory immune responses via specialized microglia.

Major Frameworks/Components:

  • Mitochondrial Dysfunction: Reduced respiratory complexes and ATP production in brain vessels and cells.
  • Hippocampal Vulnerability: Structural changes to neurons and impaired gamma oscillations.
  • Neurovascular Unit Disruption: Loss of vascular smooth muscle cells and accumulation of NOTCH3 proteins.
  • Immune Response: Increased attachment of microglia to vessels, specifically a subgroup linked to metabolism and inflammation.

Saturday, January 31, 2026

What Is: Environmental DNA (eDNA)


Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: A non-invasive monitoring technique that detects the presence of species by extracting and analyzing genetic material shed into the environment (water, soil, air) rather than isolating the organism itself.

Key Distinction/Mechanism: Unlike traditional ecology which relies on physical capture or visual observation ("macro-organismal" interaction), eDNA focuses on the "molecular" traces—such as mucus, skin cells, and gametes—organisms leave behind, effectively reading the environment as a biological archive.

Origin/History: Initially developed in the 1980s as a niche method for identifying soil microbes, it has since evolved into a global surveillance network for monitoring macro-organisms across diverse ecosystems.

Major Frameworks/Components:

  • Physical States: Exists as intracellular (within cells), extracellular (free-floating), or particle-bound DNA, with varying persistence rates.
  • Genetic Targets: Primarily targets mitochondrial DNA (mtDNA) markers (e.g., COI, 12S rRNA) due to their exponential abundance compared to nuclear DNA.
  • Analytical Workflows: Utilizes qPCR/dPCR for targeted "needle in a haystack" detection (single species) and Metabarcoding for community-wide ecosystem inventories.
  • Fate and Transport: Modeling how genetic material moves through systems (e.g., downstream flow) and degrades due to environmental factors like UV radiation, temperature, and microbial activity.

Branch of Science: Molecular Ecology, Conservation Biology, Genetics, Bioinformatics.

Future Application: Enhanced "early warning systems" for invasive species (e.g., Burmese Python in Florida), non-invasive tracking of endangered wildlife in inaccessible habitats, and "ghost" censuses of ancient human history via cave sediments.

Why It Matters: It dismantles the limitations of physical accessibility in science, enabling proactive, scalable, and highly sensitive biodiversity stewardship that can detect invisible pathogens or elusive predators without disrupting the ecosystem.

Friday, January 30, 2026

Using AI to Retrace the Evolution of Genetic Control Elements in the Brain

By decoding the DNA control elements that shape cerebellum development, artificial intelligence helps advancing our understanding of how the human brain evolved.
Image Credit: © Mari Sepp

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: A methodology utilizing advanced artificial intelligence to decode and predict the activity of genetic control elements in the developing mammalian cerebellum based on DNA sequences.

Key Distinction/Mechanism: Unlike traditional methods hindered by rapid evolutionary turnover, this approach employs machine learning models trained on comprehensive single-cell sequencing data from six mammalian species (human, bonobo, macaque, marmoset, mouse, and opossum) to predict regulatory activity directly from sequence grammar.

Major Frameworks/Components:

  • Deep Learning Models: AI algorithms trained to predict genetic control element activity solely from DNA sequences.
  • Single-Cell Sequencing: Mapping of element activity in individual cells across developing cerebellums of six diverse mammalian species.
  • In Silico Prediction: Application of trained models to predict activity across 240 mammalian species to reconstruct evolutionary histories.
  • Sequence Grammar Decoding: Identification of conserved rules defining control element function across species.

Branch of Science: Evolutionary Biology, Computational Biology, Genomics, and Neuroscience.

Future Application: Identification of human-specific genetic innovations involved in brain expansion and cognition, and potential insights into neurodevelopmental disorders by understanding regulatory gene repurposing.

Why It Matters: This research overcomes significant barriers in tracing brain evolution, revealing how specific genetic changes—such as the repurposing of the THRB gene—contributed to the expansion of the human cerebellum, a region critical for cognition and language.

Scientists uncover why some brain cells resist Alzheimer's disease

Image Credit: Scientific Frontline

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers identified the \(\text{CRL5}^{\text{SOCS4}}\) protein complex as a critical cellular defense mechanism that tags toxic tau proteins for degradation, distinguishing resilient neurons from vulnerable ones.
  • Methodology: The team utilized a novel CRISPRi-based genetic screening approach on lab-grown neurons derived from human stem cells to systematically assess the impact of knocking down specific genes on tau accumulation.
  • Key Data: The screen identified over 1,000 genes influencing tau levels, with analysis of Alzheimer's patient tissue confirming that higher expression of \(\text{CRL5}^{\text{SOCS4}}\) components correlated with increased neuron survival despite tau presence.
  • Significance: This study isolates a specific molecular pathway that explains the selective vulnerability of neurons in neurodegeneration, offering a potential target for clearing toxic aggregates before they cause cell death.
  • Future Application: Findings suggest new therapeutic avenues focused on enhancing \(\text{CRL5}^{\text{SOCS4}}\) activity or maintaining proteasome function to prevent the formation of toxic tau fragments during cellular stress.
  • Branch of Science: Neurobiology and Genetics
  • Additional Detail: Investigations revealed that mitochondrial dysfunction and oxidative stress reduce proteasome efficiency, leading to the production of a specific 25-kilodalton tau fragment resembling the NTA-tau biomarker found in patient spinal fluid.

Thursday, January 29, 2026

Ancient DNA reveals 12,000-year-old case of rare genetic disease

Daniel Fernandes preparing to take a sample
Photo Credit: ©Adrian Daly

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: Researchers have successfully performed the earliest known genetic diagnosis in humans, identifying a rare inherited growth disorder called acromesomelic dysplasia in a 12,000-year-old skeleton found in Italy.

Key Distinction/Mechanism: While traditional archaeology often relies on skeletal measurements to infer health conditions, this study utilized ancient DNA (aDNA) sequencing to pinpoint specific mutations. By extracting DNA from the petrous part of the temporal bone, scientists identified a homozygous mutation in the NPR2 gene responsible for the severe short stature in the daughter, and a heterozygous mutation in the mother, which caused a milder form of the condition.

Origin/History: The skeletal remains were originally excavated in 1963 at the Grotta del Romito in southern Italy and date back to the Upper Paleolithic period (over 12,000 years ago).

Major Frameworks/Components:

  • Ancient DNA (aDNA) Analysis: Extraction and sequencing of genetic material from prehistoric bone samples.
  • Targeted Gene Screening: Focusing specifically on genes known to influence skeletal growth, such as NPR2.
  • Comparative Clinical Genetics: Cross-referencing ancient genetic variants with modern medical databases to confirm diagnoses.

Branch of Science: Paleogenomics, Clinical Genetics, Evolutionary Anthropology, and Physical Anthropology.

Future Application: This methodology paves the way for reconstructing the medical history of ancient populations, diagnosing other rare diseases in the archaeological record, and understanding the evolutionary timeline of specific genetic mutations.

Why It Matters: This discovery proves that rare genetic diseases are not exclusively modern phenomena but have persisted throughout human history. Furthermore, the survival of the severely disabled individual into adulthood provides profound evidence of social care and community support in prehistoric hunter-gatherer societies.

Wednesday, January 28, 2026

How genes influence the microbes in our mouths

Illustration Credit: Agnieszka Grosso

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Scientists identified 11 specific regions of the human genome that significantly influence the composition and abundance of oral microbial communities, confirming that host genetics play a critical role in determining the mouth's bacterial environment.
  • Methodology: Researchers analyzed whole-genome sequences derived from saliva samples of over 12,500 individuals, repurposing the data to simultaneously measure human genetic markers and the abundance of 439 common microbial species.
  • Key Data: The study found that the FUT2 gene variant affected the levels of 58 oral bacterial species, while variations in the AMY1 gene influenced the abundance of more than 40 species.
  • Significance: This research establishes a direct biological link between human genetics and oral health, suggesting that genetic factors can predispose individuals to cavities and tooth loss by altering the oral microbiome, independent of dental hygiene habits.
  • Future Application: The statistical methods and findings developed in this study lay the groundwork for personalized dental care strategies and further large-scale investigations into how human genetics shape microbiomes throughout the body.
  • Branch of Science: Genomics, Microbiology, and Oral Biology
  • Additional Detail: Individuals with higher copy numbers of the AMY1 gene, which encodes a starch-digesting enzyme, showed increased populations of sugar-feeding bacteria and a statistically significant correlation with higher rates of denture use.

Tuesday, January 27, 2026

Scientists develop first gene-editing treatment for skin conditions

Dr. Sarah Hedtrich (center) and her team examine a skin-on-a-chip model used to test the new CRISPR-based therapy on living human skin samples.
Photo Credit: UBC Faculty of Medicine.

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers developed the first topical CRISPR-based gene therapy capable of correcting disease-causing mutations directly within human skin tissue.
  • Methodology: The treatment utilizes lipid nanoparticles (LNPs) to deliver gene-editing machinery into skin stem cells through microscopic, pain-free channels created by a clinically approved laser.
  • Key Data: In living human skin models of autosomal recessive congenital ichthyosis (ARCI), the therapy restored up to 30 percent of normal skin function, a level considered clinically meaningful.
  • Significance: This breakthrough overcomes the skin's protective barrier to enable localized, potentially permanent genetic correction without the safety risks of systemic off-target effects.
  • Future Application: The platform is being adapted for other severe genetic skin diseases like epidermolysis bullosa, as well as common conditions like eczema and psoriasis, with plans for first-in-human clinical trials.
  • Branch of Science: Biomedical Engineering, Dermatological Genetics, and Nanomedicine.

Sunday, January 25, 2026

Researchers Uncover Potential Pathway To Address Williams-Beuren Syndrome

Daniel Greif, MD, professor of medicine (cardiovascular medicine) and genetics
Photo Credit: Courtesy of Yale School of Medicine

Scientific Frontline: Extended "At a Glance" Summary

  • The Core Concept: Researchers have identified sphingosine kinase 1 as a critical enzyme that drives the excess growth of smooth muscle cells, a primary cause of life-threatening arterial blockages in patients with Williams-Beuren syndrome.
  • Key Distinction/Mechanism: While Williams-Beuren syndrome is caused by a genetic elastin deficiency, this specific enzyme acts as an early "on switch" for the disease's complications. Unlike previously identified markers (such as NOTCH3) that appear later in the disease progression, sphingosine kinase 1 initiates the smooth muscle proliferation that leads to supravalvular aortic stenosis (narrowing of the aorta).
  • Origin/History: The findings were published in Nature Cardiovascular Research on January 22, 2026, by a team led by Dr. Daniel Greif at the Yale School of Medicine.
  • Major Frameworks/Components:
    • Elastin Deficiency: The underlying genetic mutation preventing blood vessels from recoiling properly.
    • Sphingosine Kinase 1: The newly identified enzyme target responsible for cell overgrowth.
    • Smooth Muscle Proliferation: The biological process causing arterial narrowing.
    • Supravalvular Aortic Stenosis: The specific cardiovascular condition resulting from the syndrome.
  • Branch of Science: Cardiovascular Medicine, Genetics, and Cell Biology.
  • Future Application: The immediate goal is developing pharmaceutical treatments to inhibit this enzyme, offering a non-surgical option for Williams-Beuren patients. Broader applications may include treating other conditions defined by excess smooth muscle, such as atherosclerosis, pulmonary hypertension, and coronary artery restenosis.
  • Why It Matters: Currently, there are no pharmacological treatments for Williams-Beuren syndrome; high-risk surgery is the only option. Identifying this early-stage enzymatic trigger provides the first viable pathway for creating a drug that could prevent or reverse the lethal cardiovascular complications of the disease.

Saturday, January 24, 2026

AI generates short DNA sequences that show promise for gene therapies

Scientists are training AI models to recognize and write pieces of human DNA that control gene expression, in hopes that one day these synthetic sequences can improve genetic medicine.
Image Credit: Scientific Frontline / AI generated (Gemini)

Scientific Frontline: Extended "At a Glance" Summary

  • The Core Concept: A generative AI model designed to create synthetic DNA sequences, specifically cis-regulatory elements (CREs), that can precisely control gene activity within targeted cell types.
  • Key Distinction/Mechanism: Unlike traditional methods that modify existing DNA by removing or inserting segments, this model generates entirely new, functional sequences from scratch. It adapts diffusion model technology—similar to that used in image generators like DALL-E—to analyze chromatin accessibility data and write novel genetic "instructions."
  • Origin/History: Developed by scientists at the Broad Institute and Mass General Brigham; the study was published in Nature Genetics in December 2025, with further details released in January 2026.
  • Major Frameworks/Components:
    • Diffusion Models: The generative AI architecture used to create the sequences.
    • Cis-Regulatory Elements (CREs): The short DNA segments targeted for generation, responsible for tuning gene expression.
    • Chromatin Accessibility Data: The training dataset used to teach the model which regulatory elements are active in specific cells.
    • AXIN2: A protective gene used as a proof-of-concept target to demonstrate the model's ability to reactivate suppressed genes in leukemia cells.
  • Branch of Science:
    • Computational Biology / Bioinformatics
    • Artificial Intelligence (Generative AI)
    • Genetics and Genomics
  • Future Application: The technology aims to enhance gene therapies by creating synthetic regulatory elements that ensure treatments are active only in the correct tissues. Future uses could involve pairing these sequences with delivery vectors like adeno-associated viruses (AAVs) or genome editors.
  • Why It Matters: This advancement moves beyond merely editing the genome to "writing" it, enabling the design of highly specific, potent genetic switches. This could lead to more effective treatments for complex diseases like cancer by ensuring therapeutic genes are turned on more effectively than their natural counterparts would allow.

Thursday, January 22, 2026

An AI to predict the risk of cancer metastases

Group of human colon cancer cells with invasive behavior. Cell nuclei are in yellow and cell bodies in red. The finger-like protrusions of invasive cells are on the upper right region.
Image Credit: © Ariel Ruiz i Altaba, UNIGE 

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers at the University of Geneva (UNIGE) have developed an artificial intelligence algorithm capable of predicting the risk of cancer metastasis and recurrence with high reliability.
  • Methodology: The team identified specific gene expression signatures in colon cancer cells that drive invasive behavior and trained a predictive model, named MangroveGS, to analyze these genomic patterns across various tumor types to assess metastatic probability.
  • Key Data: After training, the AI model achieved a predictive accuracy of nearly 80% in forecasting the occurrence of metastases, transforming complex genomic data into actionable prognostic information.
  • Significance: This study fundamentally challenges the concept of cancer as "anarchic" cell growth, instead framing it as a distorted form of orderly biological development where suppressed genetic programs are reactivated.
  • Future Application: The algorithm will enable clinicians to stratify patients based on metastatic risk, facilitating personalized treatment strategies and identifying new therapeutic targets to block the spread of tumors.
  • Branch of Science: Oncology, Genetics, and Artificial Intelligence.
  • Additional Detail: The research highlights that metastatic potential is defined by the reactivation of ancient developmental programs, providing a predictable "logic" to tumor progression that can be decoded by AI.

Friday, January 16, 2026

Scientists develop molecules that may treat Crohn’s disease

Broad scientists designed molecules (pictured in teal) that can bind CARD9 (white with red and blue), a protein linked to inflammatory bowel disease.
Image Credit: Rush et al. Cell. DOI: 10.1016/j.cell.2025.12.013

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers developed small-molecule drug candidates that mimic a rare, protective variant of the CARD9 gene to treat Crohn's disease and other inflammatory bowel diseases.
  • Methodology: The team utilized a "binder-first" strategy, screening 20 billion molecules to identify binders to the CARD9 coiled-coil domain, followed by X-ray crystallography and competitive binding assays to isolate compounds that block inflammatory signaling.
  • Key Data: The initial library screen evaluated over 20 billion compounds, ultimately yielding molecules that significantly reduced inflammation in both human immune cells and a mouse model expressing the human CARD9 gene.
  • Significance: This work validates a complete "genetics-to-therapeutics" pipeline, proving that scaffolding proteins previously considered "undruggable" can be effectively targeted by mimicking naturally occurring protective variants.
  • Future Application: Immediate efforts focus on optimizing these compounds for human clinical trials, while the broader methodology provides a blueprint for developing drugs against other difficult genetic targets.
  • Branch of Science: Chemical Biology, Immunology, Genetics, and Molecular Biology.
  • Additional Detail: The development strategy parallels the success of PCSK9 inhibitors for cholesterol, leveraging the safety profile of a natural genetic variant to guide drug design.

Thursday, January 8, 2026

Beyond gene scissors: New CRISPR mechanism discovered

Cryo-electron microscope structure of the nuclease Cas12a3 cleaving the tail of a transfer RNA (tRNA).
 Image Credit: Biao Yuan / Helmholtz Zentrum für Infektionsforschung HZI

The CRISPR “gene scissors” have become an important basis for genome-editing technologies in many fields, ranging from biology and medicine to agriculture and industry. A team from the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg has now demonstrated that these CRISPR-Cas systems are even more versatile than previously thought. 

In cooperation with the Helmholtz Centre for Infection Research (HZI) in Braunschweig and Utah State University (USU) in Logan (USA), the scientists have discovered a novel CRISPR defense mechanism: Unlike known nucleases, Cas12a3 specifically destroys transfer ribonucleic acids (tRNA) that are vital for protein production to shut down infected cells. The team published its findings today in the journal Nature. 

Bacteria contain a wide variety of mechanisms to fend off invaders like viruses. One of these strategies involves cleaving transferring ribonucleic acids (tRNA), which are present in all cells and play a fundamental role in the translation of messenger RNA (mRNA) into essential proteins. Their inactivation limits protein production, causing the infected cell to go dormant. As a result, the attacker cannot continue to replicate and spread within the bacterial population. 

Monday, December 22, 2025

Begging gene leads to drone food

A drone (center) begs worker bees for food. HHU researchers found that the associated complex interaction pattern is genetically specified.
Photo Credit: HHU/Steffen Köhle

Is complex social behavior genetically determined? 

Yes, as a team of biologists from Heinrich Heine University Düsseldorf (HHU), together with colleagues from Bochum and Paris, established during an investigation of bees. They identified a genetic factor that determines the begging behavior of drones, which they use to socially obtain food. They are now publishing their results in the journal Nature Communications. 

Male bees, the "drones," do not have an easy time when trying to access vital proteins. They cannot digest the most important protein source for bees, pollen, on their own. To avoid starvation, they rely on workers to feed them a pre-produced food slurry, which the workers manufacture themselves from pollen. However, to obtain this food, the drones must convince the workers to hand it overusing a specific sequence of behaviors. 

Monday, December 1, 2025

Congenital muscle weakness: Muscles fail to regenerate

After a muscle injury, muscle stem cells (green) secrete laminin-α2 (magenta) into their surroundings to support their proliferation.
Image Credit: Timothy McGowan, Biozentrum, University of Basel

For more than two decades, researchers at the University of Basel have been investigating a severe form of muscular dystrophy in which muscles progressively degenerate. The research team has now discovered that the muscles’ ability to regenerate is also impaired. Future therapies should therefore aim not only to strengthen muscles but also to promote their regeneration. 

Roughly eight in every million children are born with a particularly severe form of muscle weakness known as LAMA2-related muscular dystrophy. In Switzerland, 18 cases are currently known. This rare hereditary disease is still incurable. The muscles of affected children gradually become weaker, including the respiratory musculature. In many cases, children do not reach adulthood. 

Thursday, November 27, 2025

Research on chickens can help endangered species

The difference between a wild and a domesticated variety within a species is often greater than the difference between different species.
Photo Credit: Charlotte Perhammar

LiU researchers are mapping the genetic differences between the domestic chicken and its wild relative the junglefowl. They will now try to find out whether it is possible to use genetic engineering to “undomesticated” domesticated chickens. This could be a tool for conserving endangered species – and perhaps recreating extinct animals. 

Imagine a world without a dog – often called a man’s best friend. A world also without cows, pigs or sheep. If our ancestors had not domesticated many animals and plants a few thousand years ago, there would be no fields of grain, rapeseed or cotton. All animals would be wild. Humans would hunt, fish, and gather plants in nature to put food on the table. In short, virtually every aspect of our lives would be radically affected if the phenomenon of domestication were to be deleted from the history of the Earth. 

Monday, November 24, 2025

Genetics: In-Depth Description

Image Credit: Scientific Frontline / stock image

Genetics is the branch of biology concerned with the study of genes, genetic variation, and heredity in organisms. It seeks to understand the molecular mechanisms by which traits are passed from parents to offspring, how the genetic code directs biological functions, and how variations in this code drive evolution and disease. At its core, genetics is the study of biological information: how it is stored, copied, translated, and mutated.

New clues to why some animals live longer

Sika Zheng
Photo Credit: Courtesy of University of California, Riverside

A collaborative study by scientists at the University of California, Riverside, and University of Southern California reports on how a process known as alternative splicing, often described as “editing” the genetic recipe, may help explain why some mammals live far longer than others.

Published in Nature Communications, the study, which compared alternative RNA processing in 26 mammal species with maximum lifespans ranging from 2.2 to 37 years (>16-fold differences), found that changes in how genes are spliced, more than just how active they are, play a key role in determining maximum lifespan.

New Artificial Intelligence Model Could Speed Rare Disease Diagnosis

A DNA strand with a highlighted area indicating a mutation
Image Credit: Scientific Frontline

Every human has tens of thousands of tiny genetic alterations in their DNA, also known as variants, that affect how cells build proteins.

Yet in a given human genome, only a few of these changes are likely to modify proteins in ways that cause disease, which raises a key question: How can scientists find the disease-causing needles in the vast haystack of genetic variants?

For years, scientists have been working on genome-wide association studies and artificial intelligence tools to tackle this question. Now, a new AI model developed by Harvard Medical School researchers and colleagues has pushed forward these efforts. The model, called popEVE, produces a score for each variant in a patient’s genome indicating its likelihood of causing disease and places variants on a continuous spectrum.

Friday, November 21, 2025

Genetic Engineering: Changing the Number of Chromosomes in Plants Using Molecular Scissors

For the first time, KIT researchers managed to reduce the number of chromosomes in a plant by fusing two chromosomes.
Illustration Credit: Michelle Rönspies – KIT

Higher yields, greater resilience to climatic changes or diseases – the demands on crop plants are constantly growing. To address these challenges, researchers at Karlsruhe Institute of Technology (KIT) are developing new methods in genetic engineering. In cooperation with other German and Czech researchers, they succeeded for the first time in leveraging the CRISPR/Cas molecular scissors for changing the number of chromosomes in the Arabidopsis thaliana model organism in a targeted way – without any adverse effects on plant growth. This discovery opens up new perspectives for plant breeding and agriculture.  

Featured Article

Temperature of some cities could rise faster than expected under 2°C warming

Cities are often warmer than rural areas due to a phenomenon known as the urban heat island, which can be influenced by various factors, suc...

Top Viewed Articles