. Scientific Frontline: Environmental
Showing posts with label Environmental. Show all posts
Showing posts with label Environmental. Show all posts

Tuesday, December 13, 2022

Surveilling carbon sequestration: A smart collar to sense leaks

Sandia National Laboratories’ smart collar detecting a leak from a carbon dioxide storage reservoir.
 Animation Credit: Max Schwaber

Sandia National Laboratories engineers are working on a device that would help ensure captured carbon dioxide stays deep underground — a critical component of carbon sequestration as part of a climate solution.

Carbon sequestration is the process of capturing CO2 — a greenhouse gas that traps heat in the Earth’s atmosphere — from the air or where it is produced and storing it underground. However, there are some technical challenges with carbon sequestration, including making sure that the CO2 remains underground long term. Sandia’s wireless device pairs with tiny sensors to monitor for CO2 leaks and tell above-ground operators if one happens — and it lasts for decades.

“The world is trying a whole lot of different ways to reduce the production of CO2 to mitigate climate change,” said Andrew Wright, Sandia electrical engineer and project lead. “A complementary approach is to reduce the high levels of CO2 in the atmosphere by collecting a good chunk of it and storing it deep underground. The technology we’re developing with the University of Texas at Austin aims to determine whether the CO2 stays down there. What is special about this technology is that we’ll be monitoring it wirelessly and thus won’t create another potential path for leakage like a wire or fiber.”

Good vibrations turbo charge green hydrogen production

PhD researcher Yemima Ehrnst holding the acoustic device the research team used to boost hydrogen production, through electrolysis to split water.
Photo Credit: RMIT University

They say their invention offers a promising way to tap into a plentiful supply of cheap hydrogen fuel for transportation and other sectors, which could radically reduce carbon emissions and help fight climate change.

By using high-frequency vibrations to “divide and conquer” individual water molecules during electrolysis, the team managed to split the water molecules to release 14 times more hydrogen compared with standard electrolysis techniques.

Electrolysis involves electricity running through water with two electrodes to split water molecules into oxygen and hydrogen gases, which appear as bubbles. This process produces green hydrogen, which represents just a small fraction of hydrogen production globally due to the high energy required.

Most hydrogen is produced from splitting natural gas, known as blue hydrogen, which emits greenhouse gases into the atmosphere.

Monday, December 12, 2022

Researcher takes aim at turning yellow into green by recycling urine

Urine recycling is the goal of WVU researcher Kevin Orner’s study of a wastewater treatment system that can attach directly to a toilet, extracting valuable nutrients used as fertilizers.
Illustration Credit: Sheree Wentz / West Virginia University

The waste flushed down toilets could be a valuable source of resources and profits — and easier on the environment, according to a West Virginia University engineer’s research.

Kevin Orner, a Benjamin M. Statler College of Engineering and Mineral Resources assistant professor is developing a technology that can treat urine on site rather than at a remote, centralized wastewater treatment facility. The technology could reside underneath a toilet, enabling urine treatment to happen quickly and promoting the recovery of nitrogen, a nutrient that can be sold as a fertilizer.

Orner’s findings, published in the journal Environmental Technology, make urine recycling more feasible in terms of integration into existing infrastructure and could reduce the amount of nutrients that enter lakes and rivers. Excessive nutrient discharge can put aquatic ecosystems at risk by promoting the growth of algae that consume dissolved oxygen in the water.

The goal is to transform waste collection and treatment from an environmentally harmful service that costs money to an environmentally beneficial service that makes money.

El Niño ‘flavors’ help unravel past variability, future response to climate change

Stream in Hilo.
Photo Credit: Pascal Debrunner

As with many natural phenomena, scientists look to the climate of the past to understand what may lie ahead as Earth warms. By assessing so-called ‘flavors’ of El Niño events in historical records and model simulations, researchers have a clearer picture of El Niño patterns over the past 12,000 years and are able to more accurately project future changes and impacts of this powerful force. The study, by scientists at the University of Hawaiʻi at Mānoa and University of Colorado Boulder, was published in Nature Communications.

The new set of climate model simulations developed and analyzed by Christina Karamperidou, lead author of the study and associate professor at UH Mānoa, and co-author Pedro DiNezio, associate professor at the University of Colorado Boulder, are the first to allow the study of changes in the frequency of El Niño flavors during the past 12,000 years.

This work offers new knowledge on how El Niño may respond to climate change and thus can help reduce these uncertainties in global climate models and offer more accurate predictions of El Niño impacts.

All West Coast Abalones at Risk of Extinction on the IUCN Red List

A red abalone is surrounded by a barren of purple sea urchins.
Photo Credit: Katie Sowul/California Department of Fish and Wildlife

All seven of the United States’ abalone species that live on the West Coast are now listed as Critically Endangered or Endangered on the International Union for Conservation of Nature, or IUCN, Red List of Threatened Species. These listings were based on a West Coast abalones assessment led by Laura-Rogers Bennett of the California Department of Fish and Wildlife, or CDFW, and University of California, Davis.

Six species — red, white, black, green, pink and flat abalone — are listed by IUCN as critically endangered. The northern abalone, also known as threaded or pinto abalone, is listed as endangered.

The IUCN Red List is considered the world’s most comprehensive inventory of the global conservation status of species. While the listing does not carry a legal requirement to aid imperiled species, it helps guide and inform global conservation and funding priorities.

Thursday, December 8, 2022

Researcher Aims to Uncover Plant Invasions in the Tropics

Invasive plants are invading all major ecosystems across Central America compromising the conservation of native species.
Photo Credit: Julissa Rojas-Sandoval

Invasive species of plants have a knack for settling in new settings and making big changes to an ecosystem, even leading to extinctions of native species.

Assistant Research Professor in UConn’s Institute of the Environment Julissa Rojas-Sandoval explains that invasive plants are non-native species that have been introduced into new areas generally as a result of human activities, and that they are actively spreading, causing harm to the environment, the economy, and human health. Invasive plants may have significant long-term implications for the conservation of native biodiversity, but to combat the problem, we need to know which plants are invasive, where they’re from, and how they got there.

Rojas-Sandoval leads an international collaboration including researchers from all Central American countries, working together to compile the most comprehensive databases of invasive plant species in Central America. The collaboration is called FINCA: Flora Introduced and Naturalized in Central America, and their first paper was published this week in Biological Invasions.

The collaboration arose to meet a need, says Rojas-Sandoval. “While we have a good understanding of the processes and mechanisms of plant invasions in temperate regions, there is a huge gap in our knowledge about biological invasions in the tropics, and this lack of information is limiting our ability to respond to invasive plants.”

Environmental DNA uncovers a 2-million-year-old ecosystem in Greenland

Reconstruction of the Kap København formation two-million years ago, in a time where the temperature was significantly warmer than northernmost Greenland today.
Illustration Credit: Beth Zaiken.

Around 2 million years ago, climate in Greenland resembled the forecast of a future under global warming: with trees such as poplars and birch and animals like hare, lemmings, mastodons and reindeer.

Paleoclimatic records show strong polar amplification with annual temperatures of 11–19 degrees Celsius above current values. The biological communities inhabiting the Arctic during this time remain poorly known because animal fossils are rare.

An international team, including a researcher from Lawrence Livermore National Laboratory (LLNL), report the oldest ancient environmental DNA (eDNA) record to date, describing the rich plant and animal assemblages of the Kap København Formation in north Greenland that existed 2 million years ago. The research appears on the cover of the Dec. 7 issue of the journal Nature.

Ancient DNA has been used to map a two-million-year-old ecosystem, which weathered extreme climate change. Researchers hope the results could help to predict the long-term environmental toll of today’s global warming.

Wednesday, December 7, 2022

Harvesting Light to Grow Food and Clean Energy Together

Solar panels emit a red light over tomato plants growing in a research field at UC Davis in 2022. The work further tests the findings of a UC Davis study showing plants in agrivoltaic systems respond best to the red spectrum of light while blue light is better used for energy production.
Photo Credit: Andre Daccache/UC Davis

People are increasingly trying to grow both food and clean energy on the same land to help meet the challenges of climate change, drought and a growing global population that just topped 8 billion. This effort includes agrivoltaics, in which crops are grown under the shade of solar panels, ideally with less water.

Now scientists from the University of California, Davis, are investigating how to better harvest the sun — and its optimal light spectrum — to make agrivoltaic systems more efficient in arid agricultural regions like California.

Their study, published in Earth’s Future, a journal of the American Geophysical Union, found that the red part of the light spectrum is more efficient for growing plants, while the blue part of the spectrum is better used for solar production.

Tuesday, December 6, 2022

Forest Resilience Linked with Higher Mortality Risk in Western U.S.

A new study assesses decades of U.S. forest health data, revealing a twist in Western U.S. forest fate amid climate change — higher ecosystem resilience is linked with higher mortality risk
Photo Credit: Sarah Ardin

A forest’s resilience, or ability to absorb environmental disturbances, has long been thought to be a boost for its odds of survival against the looming threat of climate change.

But a new study suggests that for some Western U.S. forests, it’s quite the opposite.

In the journal Global Change Biology, researchers have published one of the first large-scale studies of U.S. forest land exploring the link between forest resilience and mortality.

The study is based on more than three decades of satellite image data used for assessing forest resilience, and more than two decades of ground observations of forest tree death across the continental United States.

The results show that while high ecosystem resilience correlates with low mortality in eastern forests, it is linked to high mortality in western regions.

“It’s a surprising finding. … It was widely assumed that greater forest resilience indicates lower mortality risk, but this relationship hadn’t been rigorously evaluated at such a large scale until now,” said Xiaonan Tai, assistant professor of biology at New Jersey Institute of Technology and the corresponding author.

Monday, December 5, 2022

Post-lockdown auto emissions can’t hide in the grass

Polluting clouds of exhaust fumes rise in the air.
Photo Credit: Gerd Altmann

University of California scientists have a new way to demonstrate which neighborhoods returned to pre-pandemic levels of air pollution after COVID restrictions ended.

Vehicle emissions are the biggest source of carbon dioxide in Southern California’s air. As people drove their cars far less in 2020 compared to 2019 due to the pandemic, there was a major drop in CO2 on regional highways. A new study published in AGU Advances using a mobile laboratory shows the CO2 drop was roughly 60%.

By analyzing grass samples from across the state, the same study also showed in fine detail that some parts of California were back to high levels of emissions by 2021, while others — generally in more affluent areas — were not.

“Community scientists sent us hundreds of wild grass samples. We analyzed them for radiocarbon content, which is a proxy for fossil fuel emissions,” said Francesca Hopkins, UC Riverside assistant professor of climate change and study co-author.

Consortium develops sustainable aircraft engines

Flying without pollutant emissions should be possible in the future.
Photo Credit: RUB, Marquard

A new drive technology should make air travel possible with a clear conscience.

In the face of climate change, many people get on the plane with a guilty conscience: the emission of climate-damaging carbon dioxide from the combustion of fossil fuels is high. An international consortium wants to change this: The aim of the "MYTHOS" project is to develop aircraft engines that can flexibly use various sustainably produced fuels up to pure hydrogen. The project called "Medium-range hybrid low-pollution flexi-fuel / hydrogen sustainable engine" will start from 1. January 2023 funded by the European Union for four years. The coordination is carried out by Prof. Dr. Francesca di Mare, holder of the professorship for thermal turbo machines and aircraft engines of the RUB.

The overarching goal to which the project team is committed is nothing less than the decarbonization of aviation. "We will be developing and demonstrating a groundbreaking design methodology for future short and medium-range civil engines that can use a wide range of liquid and gaseous fuels and ultimately pure hydrogen," said Francesca di Mare. The fuels for which the engines are to be designed include so-called Sustainable Aviation Fuels, or SAF for short: sustainably produced fuels that are not based on fossil fuels. In order to achieve these goals, the MYTHOS consortium develops a multidisciplinary modeling approach for the characterization of the relevant engine components and uses methods of machine learning.

Thursday, December 1, 2022

Hibernating Corals and the Microbiomes That Sustain Them

A microscope image of Northern star coral with its polyps extended.
Photo Credit: Alicia Schickle, Roger Williams University

As winter approaches, many species of animals — from bears and squirrels to parasitic wasps and a few lucky humans — hunker down for some needed rest. The northern star coral (Astrangia poculata) also enters a hibernating state of dormancy, or quiescence, during this time. But what happens to its microbiome while it’s sleeping?

A study led by University of California, Davis, Assistant Professor Anya Brown found that microbial communities shift while this coral enters dormancy, providing it an important seasonal reset. The work may carry implications for coral in warmer waters struggling with climate change and other environmental issues.

“Dormancy, at its most basic, is a response to an environmental stressor — in this case, cold stress,” said Brown, who is part of the UC Davis Bodega Marine Laboratory in the Department of Evolution and Ecology. “If we understand more about this recovery period, it might help us understand what microbes may be responsible for recovering coral in warmer tropical systems.”

New clues about how carbon dioxide affects bumble bee reproduction

In addition to inducing a calming effect, carbon dioxide also can trigger a range of other physiological responses in bumble bees, according to a Penn State researcher.
Photo Credit: Eduardo Goody

While a beekeeper puffing clouds of carbon dioxide into a hive to calm the insects is a familiar image to many, less is known about its other effects on bees. A recent study revealed clues about how the chemical compound affects bee physiology, including reproduction.

The research team, led by an entomologist in Penn State’s College of Agricultural Sciences, set out to disentangle how carbon dioxide seems to bypass diapause, a phase similar to hibernation during which bees sleep over the winter, to trigger the reproductive process in bumblebee queens.

The researchers found that carbon dioxide first induced a change in metabolism, which then triggered secondary effects on reproduction. The findings, recently published in Insect Biochemistry and Molecular Biology, were contrary to previous hypotheses.

“Previously, it was believed that CO2 directly affected reproduction, but this study is some of the first evidence showing this is likely not the case,” said Etya Amsalem, associate professor of entomology. “We found that CO2 changes the way macronutrients are stored and reallocated in the body. The fact that the reproductive process is then kickstarted is just an artifact of these processes.”

Wednesday, November 30, 2022

Tropical wildlife follow the same daily patterns worldwide

An elephant faces a camera trap in one of millions of photos analyzed for a new study led by a Rice University visiting student. The study found striking similarities in how rainforest animals across the world spend their days.
Resized Image using AI by SFLORG
Photo Credit: Courtesy of Lydia Beaudrot/Conservation International

How do animals in the wild use their time? A researcher at Rice University is part of a new study that shows what motivates the daily ramble of tropical populations.

The study by an international team that includes Rice bioscientist Lydia Beaudrot and is led by Andrea Vallejo-Vargas, a graduate student at the Norwegian University of Life Sciences and currently a visiting scholar at Rice, found that communities of mammals across the wet tropics divide their days in similar ways, all generally geared toward finding their next meal. (Or avoiding being the next meal.)

Using millions of images from camera trap networks in 16 protected forests around the world, they examined the relationship of mammal activities to body sizes and feeding routines to find common characteristics among diverse populations.

Their open-access study in Nature Communications confirms that despite their diversity, similar patterns dominate the days of wildlife in Africa, Asia and the Americas.

The study showed that the activity of herbivores and insectivores was largely influenced by temperature in the environment (in study-speak, “thermoregulatory constraints”). For instance, large African herbivores are seven times more likely to be nocturnal than smaller herbivores.

Tuesday, November 29, 2022

Major fires an increasing risk as the air gets thirstier, research shows

Researchers examined global climate and fire records for the world’s forests over the last 20 years, linking fire activity and a measure of the atmosphere’s thirst.
Photo Credit: Mike Newbry

Greater atmospheric demand for water means a dramatic increase in the risk of major fires in global forests unless we take urgent and effective climate action, new research finds.

Published in Nature Communications, researchers have examined global climate and fire records in all of the world’s forests over the last 20 years.

The researchers found that in all kinds of forests, there is a strong link between fire activity and vapor pressure deficit (VPD), which is a measure of the atmosphere’s thirst.

VPD is calculated from temperature and humidity. It describes the difference between how much moisture there is in the air, and how much moisture the air can hold when it’s saturated (which is when dew forms.) The greater this difference, or deficit, the greater the air’s drying power on fuels.

Importantly, warmer air can hold more water, which means that VPD increases – and fuels will dry out more often – with rising temperatures due to climate change.

Fertilizing the Ocean to Store Carbon Dioxide

Seeding the oceans with nano-scale fertilizers could create a much-needed, substantial carbon sink.
  Illustration Credit: Stephanie King | Pacific Northwest National Laboratory

The urgent need to remove excess carbon dioxide from Earth’s environment could include enlisting some of our planet’s smallest inhabitants, according to an international research team led by Michael Hochella of the Department of Energy’s Pacific Northwest National Laboratory.

Hochella and his colleagues examined the scientific evidence for seeding the oceans with iron-rich engineered fertilizer particles near ocean plankton. The goal would be to feed phytoplankton, microscopic plants that are a key part of the ocean ecosystem, to encourage growth and carbon dioxide (CO2) uptake. The analysis article appears in the journal Nature Nanotechnology.

“The idea is to augment existing processes,” said Hochella, a Laboratory fellow at Pacific Northwest National Laboratory. “Humans have fertilized the land to grow crops for centuries. We can learn to fertilize the oceans responsibly.”

To Battle Climate Change, Scientists Tap into Carbon-Hungry Microorganisms for Clues

Electron microscopy images of 7-nanometer-diameter copper nanoparticles (shown left) and silver nanoparticles (center). At right: Electron microscopy image of ultrathin material synthesized from copper and silver nanoparticles, which could potentially be coupled with light-absorbing silicon nanowires for the design of efficient artificial photosynthesis systems. 
Credit: Peidong Yang/Berkeley Lab; courtesy of Nature Catalysis

Scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated a new technique, modeled after a metabolic process found in some bacteria, for converting carbon dioxide (CO2) into liquid acetate, a key ingredient in “liquid sunlight” or solar fuels produced through artificial photosynthesis.

The new approach, reported in Nature Catalysis, could help advance carbon-free alternatives to fossil fuels linked to global warming and climate change.

The work is also the first demonstration of a device that mimics how these bacteria naturally synthesize acetate from electrons and CO2.

“What’s amazing is that we learned how to selectively convert carbon dioxide into acetate by mimicking how these little microorganisms do it naturally,” said senior author Peidong Yang, who holds titles of senior faculty scientist in Berkeley Lab’s Materials Sciences Division and professor of chemistry and materials science and engineering at UC Berkeley.

Monday, November 28, 2022

Researchers take first step towards controlling photosynthesis using mirrors

The researchers used ultrafast laser spectroscopy
Photo Credit: Pavel Chabera

With the help of mirrors, placed only a few hundred nanometers apart, a research team has managed to use light more efficiently. The finding could eventually be useful for controlling solar energy conversion during photosynthesis, or other reactions driven by light. For example, one application could be converting carbon dioxide into fuel.

The sunlight that hits Earth for one hour is almost equivalent to the total energy consumption of mankind for an entire year. At the same time, our global emissions of carbon dioxide are increasing. Harnessing the sun's energy to capture greenhouse gas and then convert it into fuel is a hot research field.

A research team at Lund University in Sweden was previously able to show that with ultrafast laser spectroscopy, and the help of advanced materials, it would be possible to reduce the levels of greenhouse gases in the atmosphere in the long term. In their latest study in Nature Communications, the team has made new progress when it comes to taking advantage of light.

Mussel survey reveals alarming degradation of River Thames ecosystem since the 1960s

Photo Credit: Gil Ndjouwou

The detailed study measured the change in size and number of all species of mussel in a stretch of the River Thames near Reading between 1964 and 2020.

The results were striking: not only had native populations severely declined, but the mussels that remained were much smaller for their age – reflecting slower growth.

Mussels are important in freshwater ecosystems because they filter the water and remove algae. As filter feeders they’re exposed to everything in the water, and this makes them a valuable indicator of ecosystem health. Mussel shells also provide places for other aquatic species to live.

“Mussels are a great indicator of the health of the river ecosystem. Such a massive decline in mussel biomass in the river is also likely to have a knock-on effect for other species, reducing the overall biodiversity,” said Isobel Ollard, a PhD student in the University of Cambridge’s Department of Zoology and first author of the report.

She added: “The depressed river mussel used to be quite widespread in the Thames, but this survey didn’t find a single one - which also raises concerns for the survival of this species.”

Saturday, November 26, 2022

Rice lab’s catalyst could be key for hydrogen economy


Rice University researchers have engineered a key light-activated nanomaterial for the hydrogen economy. Using only inexpensive raw materials, a team from Rice’s Laboratory for Nanophotonics, Syzygy Plasmonics Inc. and Princeton University’s Andlinger Center for Energy and the Environment created a scalable catalyst that needs only the power of light to convert ammonia into clean-burning hydrogen fuel.

The research is published in the journal Science.

The research follows government and industry investment to create infrastructure and markets for carbon-free liquid ammonia fuel that will not contribute to greenhouse warming. Liquid ammonia is easy to transport and packs a lot of energy, with one nitrogen and three hydrogen atoms per molecule. The new catalyst breaks those molecules into hydrogen gas, a clean-burning fuel, and nitrogen gas, the largest component of Earth’s atmosphere. And unlike traditional catalysts, it doesn’t require heat. Instead, it harvests energy from light, either sunlight or energy-stingy LEDs.

The pace of chemical reactions typically increases with temperature, and chemical producers have capitalized on this for more than a century by applying heat on an industrial scale. The burning of fossil fuels to raise the temperature of large reaction vessels by hundreds or thousands of degrees results in an enormous carbon footprint. Chemical producers also spend billions of dollars each year on thermocatalysts — materials that don’t react but further speed reactions under intense heating.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles