![]() |
MIT researchers demonstrated that their RNA sensor could accurately identify cells expressing a mutated version of the p53 gene, which drives cancer development. Image Credits: iStock, edited by MIT News (CC BY-NC-ND 3.0) |
Using an RNA sensor, MIT engineers have designed a new way to trigger cells to turn on a synthetic gene. Their approach could make it possible to create targeted therapies for cancer and other diseases, by ensuring that synthetic genes are activated only in specific cells.
The researchers demonstrated that their sensor could accurately identify cells expressing a mutated version of the p53 gene, which drives cancer development, and turn on a gene encoding a fluorescent protein only within those cells. In future work, they plan to develop sensors that would trigger production of cell-killing proteins in cancer cells, while sparing healthy cells.
“There’s growing interest in reducing off-target effects for therapeutics,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. “With this system, we could target very specific disease cells and tissues, which opens up the possibility of identifying cancer cells and then delivering highly potent therapeutics.”
This approach could also be used to develop treatments for other diseases, including viral or bacterial infections, the researchers say.