. Scientific Frontline

Sunday, December 24, 2023

New COVID vaccine induces good antibody response to mutated viral variants

Photo Credit: CDC

Researchers at Karolinska Institutet and Danderyd Hospital have followed recipients of the new updated COVID-19 vaccine and analyzed the antibody response to different SARS-CoV-2 variants. The results show a surprisingly strong response to the now dominant and highly mutated Omicron variants.

The ongoing COMMUNITY study, which was launched in the spring of 2020 with the regular testing of 2,149 members of the Danderyd Hospital staff, has recently published the results of this autumn’s leg of the study. Twenty-four participants were recorded in this study, the majority of whom were over 64 and had received four or five previous vaccine doses. The article has been peer-reviewed and accepted for publication in the scientific journal The Lancet Infectious Diseases, and is accessible prior to publication on the preprint server, bioRxiv.

Octopus DNA solves mystery of ice sheet’s past

Octopus, probably Pareledone species, from 500m depth on the Bellingshausen Sea continental shelf.
Photo Credit: British Antarctic Survey

Scientists, including from British Antarctic Survey, have used octopus DNA to discover that the West Antarctic Ice Sheet (WAIS) likely collapsed during the Last Interglacial period around 120,000 years ago – when the global temperatures were similar to today.

This provides the first empirical evidence that the tipping point of this ice sheet could be reached even under the Paris Agreement targets of limiting warming to 1.5-2oC.

The study, published in the journal Science, was led by Professor Jan Strugnell, Chief Investigator, and Dr Sally Lau, Postdoctoral Research Fellow from ARC Securing Antarctica’s Environmental Future at James Cook University.

Octopus, probably Pareledone species, from 500m depth on the Bellingshausen Sea continental shelf. BAS.

Thursday, December 21, 2023

Artificial intelligence unravels mysteries of polycrystalline materials

Researchers used 3D model created by AI to understand complex polycrystalline materials that are used in our everyday electronic devices.
Illustration Credit: Kenta Yamakoshi

Researchers at Nagoya University in Japan have used artificial intelligence to discover a new method for understanding small defects called dislocations in polycrystalline materials, materials widely used in information equipment, solar cells, and electronic devices, that can reduce the efficiency of such devices. The findings were published in the journal Advanced Materials.  

Almost every device that we use in our modern lives has a polycrystal component. From your smartphone to your computer to the metals and ceramics in your car. Despite this, polycrystalline materials are tough to utilize because of their complex structures. Along with their composition, the performance of a polycrystalline material is affected by its complex microstructure, dislocations, and impurities. 

A major problem for using polycrystals in industry is the formation of tiny crystal defects caused by stress and temperature changes. These are known as dislocations and can disrupt the regular arrangement of atoms in the lattice, affecting electrical conduction and overall performance. To reduce the chances of failure in devices that use polycrystalline materials, it is important to understand the formation of these dislocations. 

How technology and economics can help save endangered species

The gray wolf is among the animals protected by the Endangered Species Act.
Image Credit: Oregon Department of Fish & Wildlife
(CC BY-SA 2.0)

A lot has changed in the world since the Endangered Species Act (ESA) was enacted 50 years ago in December 1973.

Two researchers at The Ohio State University were among a group of experts invited by the journal Science to discuss how the ESA has evolved and what its future might hold.

Tanya Berger-Wolf, faculty director of Ohio State’s Translational Data Analytics Institute, led a group that wrote on “Sustainable, trustworthy, human-technology partnership.”  Amy Ando, professor and chair of the university’s Department of Agricultural, Environmental, and Development Economics, wrote on “Harnessing economics for effective implementation.”

Berger-Wolf and her colleagues wrote, “We are in the middle of a mass extinction without even knowing all that we are losing and how fast.” But technology can help address that.

For example, they note the value of tools like camera traps that survey animal species and smartphone apps that allow citizen scientists to count insects, identify bird songs and report plant observations.

Inside the Matrix: Nanoscale Patterns Revealed Within Model Research Organism

Super-resolution microscopy reveals two roundworm collagens labeled in red and green.
Image Credit: Courtesy of University of California San Diego

Species throughout the animal kingdom feature vital interfaces between the outermost layers of their bodies and the environment. Intricate microscopic structures—featured on the outer skin layers of humans, as one example—are known to assemble in matrix patterns.

But how these complex structures, known as apical extracellular matrices (aECMs) are assembled into elaborately woven architectures has remained an elusive question.

Now, following years of research and the power of a technologically advanced instrument, University of California San Diego scientists have unraveled the underpinnings of such matrices in a tiny nematode. The roundworm Caenorhabditis elegans has been studied extensively for decades due to its transparent structure that allows researchers to peer inside its body and examine its skin.

Described in the journal Nature Communications, School of Biological Sciences researchers have now deciphered the assemblage of aECM patterns in roundworms at the nanoscale. A powerful, super-resolution microscope helped reveal previously unseen patterns related to columns, known as struts, that are key to the proper development and functioning of aECMs.

“Struts are like tiny pillars that connect the different layers of the matrix and serve as a type of scaffolding,” said Andrew Chisholm, a professor in the School of Biological Sciences and the paper’s senior author.

The future of canine stem cell therapy: unprecedented, painless, and feeder-free

Generating canine induced pluripotent stem cells (iPSCs) without using feeder cells   Scientists created canine iPSCs from urine-derived cells with great efficiency     
Illustration Credit: Shingo Hatoya, Osaka Metropolitan University

Dog owners may need to learn to appreciate their best friend’s urine. Scientists at Osaka Metropolitan University have devised an efficient, non-invasive, and pain-free method to reprogram canine stem cells from urine samples, bringing furry companions one step closer to veterinary regenerative treatment.

Induced pluripotent stem cells (iPSCs) have been widely employed in studies on human generative medicine. With the growing importance of advanced medical care for dogs and cats, there is an expectation that new therapies utilizing iPSCs will be developed for these companion animals, just as they have been for humans. Unfortunately, canine somatic cells exhibit lower reprogramming efficiency compared to those of humans, limiting the types of canine cells available for generating iPSCs. IPSC induction often involves using feeder cells from a different species. However, considering the associated risks, minimizing xenogeneic components is often advisable, signifying the need to improve the efficiency of reprogramming various types of canine cells in dogs without using feeder cells.

Moderation surpasses excess

DYRK1A bound to FAM53C in the cytoplasm is less active. DYRK1A not bound to FAM53C in the nucleus is highly active. Functional abnormalities cause various neuropsychiatric developmental and functional disorders. 
Illustration Credit: KyotoU/Gakuji Tobiyama/Yoshihiko Miyata

Down syndrome, a congenital disorder stemming from abnormal cell division and differentiation, is most common in newborns fated to neurodevelopmental delays and other health complications.

The genetic defect causes the dysfunction of the protein kinase DYRK1A, which is encoded on chromosome 21 and is deeply associated with both Down syndrome and autism spectrum disorder. DYRK1A has attracted attention as a target molecule for treating various diseases, but specific cellular mechanisms regulating the enzyme DYRK1A have yet to be made clear.

Now, researchers at Kyoto University have identified the FAM53C protein and its DYRK1A-inhibiting effect that keeps the protein kinase inactive inside the cytoplasm.

Artery calcification more common in night owls


Artery calcification is almost twice as common in night owls compared to early birds, according to a study from the University of Gothenburg, Sweden. Circadian rhythm appears to be particularly important for the heart and blood vessels during the early stages of the disease.

Artery calcification, or atherosclerosis as it is also known, involves fatty deposits accumulating on the inside of the arteries, making it harder for blood to pass through. The disease develops over a very long period of time, and is not noticed until it leads to angina, blood clots, heart attack, or stroke. Previous research has shown that people with late-night habits have an increased risk of cardiovascular disease, but this is the first study to show how circadian rhythm specifically affects artery calcification.

Coronary artery calcification

The study, which has been published in the journal Sleep Medicine, involved 771 men and women aged between 50 and 64, all of whom are part of the larger population study SCAPIS. The degree of artery calcification in the heart’s coronary arteries was examined using computer tomography. Participants themselves indicated their so called chronotype on a five-point scale: extreme morning type, morning type to some extent, neither morning nor evening type, evening type to some extent, or extreme evening type.

Common insect species are suffering the biggest losses

The invasive Asian Ladybeetle (Harmonia axyridis)
Photo Credit: Melani Marfeld

Insect decline is being driven by losses among the locally more common species, according to a new study published in Nature. Led by researchers at the German Centre for Integrative Biodiversity Research (iDiv) and the Martin Luther University Halle-Wittenberg (MLU), the meta-analysis of 923 locations around the world notes two significant trends: Species with the most individuals are disproportionately decreasing in number, and no other species have increased to the high numbers previously seen. This likely explains the frequent observation that there are fewer insects around now than ten, twenty, or thirty years ago.

Researchers at iDiv looked at long-term trends of land-based insects, such as beetles, moths, and grasshoppers, and found that decreases in the number of the formerly most common species have contributed most to local insect declines. Common or abundant insect species are those species that are locally found in the highest numbers, but which species these are differ among locations. The study’s findings challenge the idea that changes in insect biodiversity result from rarer species disappearing.

The study follows the recent sounding of alarm bells about insect loss, as researchers note dramatic declines in the total number of insects in many parts of the world. However, little is known about the general trends among locally rare and abundant species over long periods. "It was obvious this needed exploring," says Roel van Klink, lead author of the study and senior scientist at iDiv and MLU. "We had to know whether observations about declines in total abundances of insects differed among common and rare species, and how this translated into changes in the overall insect diversity."

Multitasking microbes: UW–Madison scientists engineer bacteria to make two valuable products from plant fiber

Ben Hall, Genetics Ph.D. Student, holds a mixed sample of microbes and carotenoids, in Tim Donohue’s lab.
Photo Credit: Chelsea Mamott

We often look to the smallest lifeforms for help solving the biggest problems: Microbes help make foods and beverages, cure diseases, treat waste and even clean up pollution. Yeast and bacteria can also convert plant sugars into biofuels and chemicals traditionally derived from fossil fuels — a key component of most plans to slow climate change.

Now University of Wisconsin–Madison researchers have engineered bacteria that can produce two chemical products at the same time from underutilized plant fiber. And unlike humans, these multitasking microbes can do both things equally well.

“To my knowledge, it’s one of the first times you can make two valuable products simultaneously in one microbe,” says Tim Donohue, UW–Madison professor of bacteriology and director of the Great Lakes Bioenergy Research Center.

The discovery, detailed in a paper in the December issue of the journal Applied and Environmental Microbiology, could help make biofuels more sustainable and commercially viable.

“In principle, the strategy lowers the net greenhouse gas emissions and improves the economics,” Donohue says. “The amount of energy and greenhouse gas that you need to make two products in one pot is going to be less than running two pots to make one product in each pot.”

Featured Article

Climate change may increase the spread of neurotoxin in the oceans

The researchers’ findings raise concerns about how climate change may affect the levels of methylmercury in fish and shellfish. Photo Credit...

Top Viewed Articles