. Scientific Frontline

Wednesday, September 17, 2025

Coral reefs set to stop growing as climate warms

Dead reef crest on Mexico's Caribbean coast.
Photo Credit Chris Perry

Most coral reefs will soon stop growing and may begin to erode – and almost all will do so if global warming hits 2°C, according to a new study in the western Atlantic.

An international team, led by scientists from the University of Exeter, assessed 400 reef sites around Florida, Mexico and Bonaire.

The study, published in the journal Nature, projects that more than 70% of the region’s reefs will stop growing by 2040 – and over 99% will do so by 2100 if warming reaches 2°C or more above pre-industrial levels.

Climate change – along with other issues such as coral disease and deteriorating water quality – reduces overall reef growth by killing corals and impacting colony growth rates.

To understand how changing reef ecology is impacting reef growth potential – in other words, how the balance of living organisms translates into vertical “accretion” (reef-building) – the team analysed fossil reefs from across the tropical western Atlantic region to improve understanding of how reef growth rates vary depending on the types of coral present.

Tuesday, September 16, 2025

Sandy Seafloors: An Overlooked Source of Greenhouse Gas

Photo Credit: Walter Frehner

A new study reveals that methane can form in the upper layers of sandy seabeds — something that has taken scientists by surprise. Special microorganisms are at work, and the phenomenon may be happening along coastlines all over the world.  

Methane is a powerful greenhouse gas, produced in many natural environments by microorganisms.  

Until recently, scientists believed these microbes were intolerant of oxygen and could only survive in oxygen-free zones. But new research shows they can, in fact, persist in oxygenated environments — lying dormant until the oxygen disappears. That means an entirely new source of methane emissions has just been discovered.  

“We do not yet know how much methane these microbes are producing. That is the next big question. But we suspect the contribution is significant and widespread in sandy coastal zones. This is not something confined to a few isolated spots on the globe,” says Ronnie N. Glud, professor at the Department of Biology and an expert in biogeochemistry.  

Study links folic acid to gestational diabetes

Image Credit: Anna Mysłowska-Kiczek

New research led by Flinders University highlights the urgent need to establish a safe upper limit for folic acid intake during pregnancy and to improve guidelines on folic acid supplementation during pregnancy.

A new study by published in the journal Nutrients links the rise in gestational diabetes in part to excess maternal folate levels, due to the dual impact of folic acid (FA, or synthetic folate) in food fortification and higher-than-recommended supplementation doses during pregnancy.

National surveillance shows the incidence of gestational diabetes mellitus (GDM) in Australia has more than tripled, rising from 5.6% in 2010 to 19.3% in 2022.

Stem Cells Repair Mouse Brains Post-Stroke

This image shows a coronal section through the mouse brain after stroke and neural stem cell transplantation. The dashed circle indicates the stroke area. The neurite projections of the transplanted human cells are stained in dark brown. Neurites extend locally into the cortex (CX) but also via the corpus callosum (CC) into the other brain hemisphere.
Image Credit: Universität Zürich

Stem cell transplantation can reverse stroke damage, researchers at the University of Zurich report. Its beneficial effects include regeneration of neurons and restoration of motor functions, marking a milestone in the treatment of brain disorders.

One in four adults suffer a stroke in their lifetime, leaving around half of them with residual damage such as paralysis or speech impairment because internal bleeding or a lack of oxygen supply kills brain cells irreversibly. No therapies currently exist to repair this kind of damage. “That’s why it is essential to pursue new therapeutic approaches to potential brain regeneration after diseases or accidents,” says Christian Tackenberg, the Scientific Head of Division in the Neurodegeneration Group at the University of Zurich (UZH) Institute for Regenerative Medicine.

Neural stem cells have the potential to regenerate brain tissue, as a team led by Tackenberg and postdoctoral researcher Rebecca Weber has now compellingly shown in two studies that were conducted in collaboration with a group headed by Ruslan Rust from the University of Southern California. “Our findings show that neural stem cells not only form new neurons, but also induce other regeneration processes,” Tackenberg says.

A Paleontologist Has Discovered a Tooth of an Extinct Carnivorous Whale in the Sverdlovsk Region

The unique find belonged to a giant aquatic mammal that lived 37 million years ago
Photo Credit: Maxim Sinitsa

In the Sverdlovsk region, paleontologists have found the tooth of an ancient carnivorous whale that lived during the Eocene period (approximately 37 million years ago). This is the first such find, indicating that this animal lived in the Urals in ancient times. The unique find was discovered by Maxim Sinitsa, Associate professor of the UrFU Department of Biodiversity and Bioecology, during a joint expedition of the Ural-Siberian Society of Fossil Lovers public organization.

"We have been collecting fossils on the banks of the Tura River. The expedition included both volunteers and professional paleontologists from Ekaterinburg and Tyumen. We traveled to a well-known location, where Eocene deposits, about 37 million years old, are exposed for many kilometers. This time, hundreds of teeth and skeletal fragments of cartilaginous (rays, gray, otodus and sand tiger sharks of the genera striatolamia, yekelotodus, mennerotodus, physogaleus), bony fish (whiting, cod and tuna fish), as well as part of the shell of a turtle were found. But the main find is a well-preserved fragment of an ancient whale tooth from the extinct Basilosaurid family," says Maxim Sinitsa.

Sunday, March 16, 2025

Jope Hip and Joint Dog Chews: A Detailed Review


Jope Hip and Joint Dog Chews are a relatively new addition to canine joint health supplements. If you're a dog owner concerned about your furry friend's mobility and comfort, especially as they age, you're likely interested in learning more about this product. This detailed review will explore Jope's key features, ingredients, scientific backing, potential benefits, and drawbacks to help you make an informed decision about whether it's the right choice for your dog.

Product Overview

Jope Hip and Joint Dog Chews are marketed as a superior alternative to traditional glucosamine and chondroitin-based joint supplements. These chews are suitable for dogs of all ages and breeds, including puppies and adult dogs. The company emphasizes the following key features:

  • UC-II® Collagen: This patented form of undenatured type II collagen is a primary active ingredient and is claimed to be more effective than glucosamine and chondroitin in supporting joint health.
  • Omega-3 Fatty Acids: Jope contains high levels of EPA and DHA from fish oil, which are known for their anti-inflammatory properties.
  • Curcumin: This turmeric extract provides antioxidant support and further helps reduce inflammation.
  • Veterinarian Formulated: Jope was developed by veterinarians.
  • Made in the USA: The chews are manufactured in an NASC-approved facility in Michigan.
  • Cold-Pressed: This manufacturing process helps preserve the potency of the ingredients.
  • Palatability: Jope chews are designed to be tasty and appealing to dogs.

Tuesday, February 11, 2025

Mystery solved: New study reveals how DNA repair genes play a major role in Huntington's disease

Dr. Xiangdong William Yang
Photo Credit: Courtesy of UCLA/Health

A new UCLA Health study has discovered in mouse models that genes associated with repairing mismatched DNA are critical in eliciting damages to neurons that are most vulnerable in Huntington's disease and triggering downstream pathologies and motor impairment, shedding light on disease mechanisms and potential new ways to develop therapies. 

Huntington’s disease is one of the most common inherited neurodegenerative disorders that typically begins in adulthood and worsens over time. Patients begin to lose neurons in specific regions of the brain responsible for movement control, motor skill learning, language and cognitive function. Patients typically live 15 to 20 years after diagnosis with symptoms worsening over time. There is no known cure or therapy that alters the course of the disease.

The cause of Huntington's disease was discovered over three decades ago--a "genetic stutter" mutation involves repeats of three letters of the DNA, cytosine-adenine-guanine (CAG), in a gene called huntingtin. Healthy individuals usually have 35 or fewer CAG repeats, but people inherited with mutation of 40 or more repeats will develop the disease. The more CAG repeats a person inherits, the earlier the disease onset occurs. However, how the mutation causes the disease remains poorly understood. 

Research yields eco-friendly way to separate, recycle refrigerants tied to climate crisis

Lead author Abby Harders, who earned her doctorate in chemical and petroleum engineering at the University of Kansas, now serves as head of research and development at Icorium Engineering, situated in KU’s Innovation Park.
Photo Credit: Max Jiang

A scholarly report in the journal Science Advances from researchers at the University of Kansas shows a new eco-friendly method for separating the chemicals found in common refrigerants for easier recycling at industrial scale.

“The motivation of this work is to enable separation of highly complex gaseous refrigerant mixtures,” said lead author Abby Harders, who performed the research as a KU doctoral student in the research group of co-author Mark Shiflett, Foundation Distinguished Professor of Chemical and Petroleum Engineering. “This effort has been driven by climate legislation phasing out certain hydrofluorocarbon (HFC) refrigerants.”

The paper's key innovation uses membranes — amorphous fluorinated polymers, to be specific — that efficiently isolate complex refrigerant mixtures. Other separation methods, like distillation, are less effective because of the complex composition of the mixtures. Harders said the membranes are fabricated to allow some gases to pass through while restricting others — resulting in effective purification.

To demonstrate the technology could scale to industrial viability, the team — including many associated with KU’s Wonderful Institute for Sustainable Engineering — developed a custom-coating process to create submicron coatings on the membrane’s porous supports, creating composite hollow fibers. The results show a functional prototype, proving the technology’s usefulness to firms engaged in refrigerant recovery and reuse. 

Innovative target design leads to surprising discovery in laser-plasma acceleration

Researchers studying laser-driven proton acceleration introduced an innovative, self-replenishing water sheet target to address the inefficiency of replacing targets after each laser pulse. The target had a surprising side effect, resulting in a naturally focused, more tightly aligned proton beam. 
Image Credit: Greg Stewart/SLAC National Accelerator Laboratory)

Scientists have developed a groundbreaking method for generating fast, bright proton beams using a high-repetition-rate laser-plasma accelerator. This work, published in Nature Communications, resolves several long-standing challenges and ushers this technology to the threshold of real-world applications – all thanks to a stream of water. 

“These exciting results pave the way for new applications of relativistic high-power lasers for applications in medicine, accelerator research, and inertial fusion,” said Siegfried Glenzer, professor of photon science and the director of the High Energy Density Science division at the Department of Energy's SLAC National Accelerator Laboratory. 

Celebrating 15 Years of Women and Girls in Science at KAUST

Photo Credit: Courtesy of King Abdullah University of Science and Technology

This year marks the 10th anniversary of the United Nation’s International Day of Women and Girls in Science. It also marks 15 years since King Abdullah University of Science and Technology (KAUST) was established as the first mixed-gender university in Saudi Arabia. Since then, KAUST has been a pioneer in championing women and girls in science in the Kingdom and across the Middle East. Today we celebrate all KAUST’s female graduates and scientists, many of whom have achieved remarkable success in their careers, such as becoming professors at leading universities worldwide, taking leadership roles in Saudi ministries and giga-projects, and founding tech companies that drive investment and create jobs in the Kingdom.     

KAUST's world-class research and education, supported by initiatives and projects like the KAUST Gifted Student Program (KGSP), the Ibn Rushd fellowship program and the KAUST Entrepreneurship Center, have been instrumental in this success. These programs nurture talent, foster innovation and empower women to excel in science and technology.   

Featured Article

What Is: Extinction Level Events

A Chronicle of Earth's Biotic Crises and an Assessment of Future Threats Image Credit: Scientific Frontline Defining Biotic Catastrophe ...

Top Viewed Articles