![]() |
| Photo Credit: Sasin Tipchai |
In a mouse model of liver transplantation, UCLA researchers have identified proteins that act as “protective switches” guarding the liver against damage occurring when blood supply is restored during transplantation, a process known as ischemia-reperfusion injury.
The finding could increase the supply of donor organs by using molecular therapies to strengthen the liver’s protective pathways. By boosting this protection, organs that would otherwise be discarded as damaged or suboptimal could be made suitable for transplantation and added to the donor pool, said Kenneth J. Dery, Ph.D , an associate adjunct professor of surgery in the division of liver and pancreas transplantation at the David Geffen School of Medicine at UCLA and the study’s co-senior author.
“One of the most intractable problems in the field of organ transplantation remains the nationwide shortage of donor livers, which has led to high patient mortality while waiting for a liver transplant,” Dery said. “This could ultimately help address the national transplant shortage and lower mortality rates.”

.jpg)
.jpg)



_MoreDetail-v3_x2_1920x1080.jpg)


