. Scientific Frontline

Tuesday, September 30, 2025

Hidden genetic risk could delay diabetes diagnosis for Black and Asian men

 

Photo Credit: Barbara Olsen

A common but often undiagnosed genetic condition may be causing delays in type 2 diabetes diagnoses and increasing the risk of serious complications for thousands of Black and South Asian men in the UK – and potentially millions worldwide.

The new study is conducted by the University of Exeter, in collaboration with Queen Mary University of London (QMUL) and funded through a Wellcome Discovery Award. It has found around one in seven Black and one in 63 South Asian men in the UK carry a genetic variant known as G6PD deficiency. Men with G6PD deficiency are, on average, diagnosed with type 2 diabetes four years later than those without the gene variant. But despite this, fewer than one in 50 have been diagnosed with the condition

G6PD deficiency does not cause diabetes, but it makes the widely used HbA1c blood test – which diagnoses and monitors diabetes – appear artificially low. This can mislead doctors and patients, resulting in delayed diabetes diagnosis and treatment.

Scientists solve mystery of loop current switching in Kagome metals

Structure and electron behavior in kagome metals: (A) The triangular atomic arrangement showing how tiny electrical currents flow in loops. (B) How electrons organize into wave-like density patterns. (C) How electrons normally move through the material. (D) How electron movement is affected by the wave patterns. (E) The special combined state where both loop currents and wave patterns exist together, creating the conditions for magnetic switching.
Image Credit: Tazai et al., 2025

Quantum metals are metals where quantum effects—behaviors that normally only matter at atomic scales—become powerful enough to control the metal's macroscopic electrical properties. 

Researchers in Japan have explained how electricity behaves in a special group of quantum metals called kagome metals. The study is the first to show how weak magnetic fields reverse tiny loop electrical currents inside these metals. These switching changes the material's macroscopic electrical properties and reverses which direction has easier electrical flow, a property known as the diode effect, where current flows more easily in one direction than the other.  

Why mamba snake bites worsen after antivenom

Photo Credit: Johan Marais

A breakthrough study at The University of Queensland has discovered a hidden dangerous feature in the Black Mamba, one of the most venomous snakes in the world.

Professor Bryan Fry from UQ’s School of the Environment said the study revealed  the venoms of 3 species of mamba were far more neurologically complex than previously thought, explaining why antivenoms were sometimes ineffective.

“The Black Mamba, Western Green Mamba and Jamesons Mamba snakes aren’t just using one form of chemical weapon, they’re launching a coordinated attack at 2 different points in the nervous system,” Professor Fry said.

“If you’re bitten by 3 out of 4 mamba species, you will experience flaccid or limp paralysis caused by postsynaptic neurotoxicity.

“Current antivenoms can treat the flaccid paralysis but this study found the venoms of these 3 species are then able to attack another part of the nervous system causing spastic paralysis by presynaptic toxicity.

Monday, September 29, 2025

Rapid flash Joule heating technique unlocks efficient rare‑earth element recovery from electronic waste

The research team’s method uses flash Joule heating.
Photo Credit: Jeff Fitlow/Rice University.

A team of researchers including Rice University’s James Tour and Shichen Xu has developed an ultrafast, one-step method to recover rare earth elements (REEs) from discarded magnets using an innovative approach that offers significant environmental and economic benefits over traditional recycling methods. Their study was published in the Proceedings of the National Academy of Sciences Sept. 29, 2025.

Conventional rare earth recycling is energy-heavy and creates toxic waste. The research team’s method uses flash Joule heating (FJH), which rapidly raises material temperatures to thousands of degrees within milliseconds, and chlorine gas to extract REEs from magnet waste in seconds without needing water or acids. The breakthrough supports U.S. efforts to boost domestic mineral supplies.

“We’ve demonstrated that we can recover rare earth elements from electronic waste in seconds with minimal environmental footprint,” said Tour, the T.T. and W.F. Chao Professor of Chemistry, professor of materials science and nanoengineering and study corresponding author. “It’s the kind of leap forward we need to secure a resilient and circular supply chain.”

The first animals on Earth may have been sea sponges, study suggests

Some of the first animals on Earth were likely ancestors of the modern sea sponge, according to MIT geochemists who unearthed new evidence in very old rocks.
Image Image: Jose-Luis Olivares, MIT
(CC BY-NC-ND 4.0)

A team of MIT geochemists has unearthed new evidence in very old rocks suggesting that some of the first animals on Earth were likely ancestors of the modern sea sponge.

In a study appearing today in the Proceedings of the National Academy of Sciences, the researchers report that they have identified “chemical fossils” that may have been left by ancient sponges in rocks that are more than 541 million years old. A chemical fossil is a remnant of a biomolecule that originated from a living organism that has since been buried, transformed, and preserved in sediment, sometimes for hundreds of millions of years.

The newly identified chemical fossils are special types of steranes, which are the geologically stable form of sterols, such as cholesterol, that are found in the cell membranes of complex organisms. The researchers traced these special steranes to a class of sea sponges known as demosponges. Today, demosponges come in a huge variety of sizes and colors, and live throughout the oceans as soft and squishy filter feeders. Their ancient counterparts may have shared similar characteristics.

More Signs of Phase-change 'Turbulence' in Nuclear Matter

 A view from the ground up of the three-story STAR detector at the Relativistic Heavy Ion Collider (RHIC).
Image Credit: Brookhaven National Laboratory

Members of the STAR Collaboration, a group of physicists collecting and analyzing data from particle collisions at the Relativistic Heavy Ion Collider (RHIC), have published a new high-precision analysis of data on the number of protons produced in gold-ion smashups over a range of energies. The results, published in Physical Review Letters, suggest one part of a key signature of a so-called “critical point.” That’s a unique point on the “map” of nuclear phases that marks a change in the way quarks and gluons, the building blocks of protons and neutrons, transform from one phase of matter to another.

Discovering the critical point has been a central goal of research at RHIC, a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at DOE’s Brookhaven National Laboratory. Like centuries-old efforts to map out the solid, liquid, and gaseous phases of substances like water, it’s considered essential for fully understanding and describing the quark-gluon plasma. This unique form of nuclear matter is generated by RHIC’s most energetic nuclear collisions, which effectively “melt” the protons and neutrons that make up the colliding gold ions, briefly liberating their innermost building blocks to form a nearly perfect fluid state that once filled our early universe.

Moon-forming disc around massive planet

An artistic rendering of a dust and gas disc encircling the young exoplanet, CT Cha b, 625 light-years from Earth. Spectroscopic data from the NASA/ESA/CSA James Webb Space Telescope suggest the disc contains the raw materials for moon formation. The planet appears at lower right, while its host star and surrounding protoplanetary disc are visible in the background. 
Image Credit: NASA, ESA, CSA, STScI, G. Cugno (University of Zürich, NCCR PlanetS), S. Grant (Carnegie Institution for Science), J, Olmsted (STScI), L. Hustak (STScI)

The NASA/ESA/CSA James Webb Space Telescope has provided the first direct measurements of the chemical and physical properties of a potential moon-forming disc encircling a large exoplanet. The carbon-rich disc surrounding the world called CT Cha B, which is located 625 light years away from Earth, is a possible construction yard for moons, although no moons are detected in the Webb data.

Our Solar System contains eight major planets, and more than 400 known moons orbiting six of these planets. Where did they all come from? There are multiple formation mechanisms. The case for large moons, like the four Galilean satellites around Jupiter, is that they condensed out of a dust and gas disc encircling the planet when it formed. But that would have happened over 4 billion years ago, and there is scant forensic evidence today.

Childhood overeating can be a harbinger of later mental health struggles in girls, study finds

Photo Credit: Toa Heftiba

Girls who overeat regularly in preschool years are more likely to experience anxiety, impulsivity and hyperactivity in adolescence, according to a new study led by researchers at McGill University and the Douglas Research Centre.

The study followed more than 2,000 Quebec children using provincial data, tracking eating patterns reported by caregivers in early childhood and assessing mental-health symptoms when participants turned 15. The link between overeating and later difficulties was seen in girls, but not in boys.

Researchers use nanotubes to improve blood flow in bioengineered tissues

Assistant Professors Ying Wang (Department of Biomedical Engineering) and Yingge Zhou (School of Systems Science and Industrial Engineering) collaborated on research about engineered tissues.
Photo Credit: Jonathan Cohen.

When biomedical researchers need to test their latest ideas, they often turn to engineered human tissue that mimics the responses in our own bodies. It’s become an important intermediary step before human clinical trials.

One limiting factor: The cells need blood circulation to survive, and achieving that can be difficult in three-dimensional cell structures. Without proper vascular systems — even primitive ones — engineered tissue faces restricted size and functionality, even developing necrotic regions of dead cells.

New research from Binghamton University’s Thomas J. Watson College of Engineering and Applied Science offers a possible solution to the problem. In a paper recently published in the journal Biomedical Materials, Assistant Professors Ying Wang and Yingge Zhou show how the latest nanomanufacturing techniques can create a better artificial vascular system.

Simple test can predict risk of severe liver disease

The researchers' new method can contribute to earlier detection of cirrhosis and liver cancer.
Image Credit: Scientific Frontline / AI Generated

A new study from Karolinska Institutet, published in the scientific journal The BMJ, shows how a simple blood analysis can predict the risk of developing severe liver disease. The method may already start to be applied in primary care to enable the earlier detection of cirrhosis and cancer of the liver.

“These are diseases that are growing increasingly common and that have a poor prognosis if detected late,” says Rickard Strandberg, affiliated researcher at Karolinska Institutet’s Department of Medicine, Huddinge, who has developed the test with his departmental colleague Hannes Hagström. “Our method can predict the risk of severe liver disease within 10 years and is based on three simple routine blood tests.” 

For the study, the researchers at Karolinska Institutet and their colleagues in Finland evaluated how well the method can estimate the risk of severe liver disease. The model, which is called CORE, was produced with advanced statistical methods and is based on five factors: age, sex and levels of three common liver enzymes (AST, ALT and GGT), which are commonly measured during regular health checks. 

Featured Article

What Is: Extinction Level Events

A Chronicle of Earth's Biotic Crises and an Assessment of Future Threats Image Credit: Scientific Frontline Defining Biotic Catastrophe ...

Top Viewed Articles