. Scientific Frontline

Thursday, October 9, 2025

Old Puzzle around Protein Distribution in Plant Cells Solved

Lei Zhang works with the plant Arabidopsis.
Photo Credit: © RUB, Marquard

How lipids in the membrane of the endoplasmic reticulum of plant cells interact with proteins to organize the first step of protein transport has long been an unsolved mystery. A research team at Ruhr University Bochum, Germany, led by Professor Christopher Grefen, has uncovered how a lipid switch in plant cells directs proteins to the endoplasmic reticulum (ER) – the gateway to the cell’s secretory pathway. The study was published in the journal Proceedings of the National Academy of Sciences

Wednesday, October 8, 2025

Researchers find key to stopping deadly infection

When rotavirus enters a cell without the FA2H enzyme, it becomes trapped in pockets called endosomes (indicated by red arrows). This prevents the virus from infecting the rest of the cell.
Image Credit: Ding Lab/WashU Medicine

Rotavirus causes severe dehydrating diarrhea in infants and young children, contributing to more than 128,500 deaths per year globally despite widespread vaccination efforts. Although rotavirus is more prevalent in developing countries, declining vaccination uptake in the United States has resulted in increasing cases in recent years.

New research from Washington University School of Medicine in St. Louis has identified a key step that enables rotavirus to infect cells. The researchers found that disabling the process in tissue culture and in mice prevented infection. This discovery opens up new avenues for therapeutic intervention to treat rotavirus and other pathogens that rely on the same infection mechanism.

“Rotavirus kills infants and children, young people who never had a chance at life,” said Siyuan Ding, an associate professor of molecular microbiology at WashU Medicine. “That’s why we want to develop effective therapeutics, even though we already have vaccines that we can use. Not all kids receive the vaccine, and this virus is very infectious. Once a child has the virus, there’s currently no treatment; we can only manage the symptoms.”

SwRI produces, evaluates sustainable aviation fuel made from e-fuel

A multidisciplinary team at Southwest Research Institute (SwRI) produced, characterized and tested standard jet fuel along with two sustainable aviation fuels (SAF), including one developed at SwRI, through an internally funded project. A custom jet engine test stand was used to gather emissions and particulate data.
Photo Credit: Southwest Research Institute

Southwest Research Institute produced a batch of blended sustainable aviation fuel (SAF) through a refinery process that started with electrofuels or e-fuels made from carbon dioxide and green hydrogen. Using internal research funding, a multidisciplinary team produced and characterized the SAF, along with two other commercially available fuels, before collecting emissions and particulate data to support the aviation industry’s emissions goals.

“Aviation is difficult to decarbonize due to the fuel density and power required for flight,” said Francesco Di Sabatino, a group leader in SwRI’s Mechanical Engineering Division. “With this project we’re gathering important data for conventional fuel and two different SAFs.”

Conventional jet fuel is made from petroleum that burns inside a jet engine. Fueling jets with SAF could help reduce carbon emissions. Worldwide air travel accounts for 2% of all carbon emissions, and 12% of all carbon emissions from transportation. The team tackled three focus areas — production, characterization and testing.

Researchers discover of a new type of diabetes in babies

Photo Credit: Rene Terp

Advanced DNA sequencing technologies and a new model of stem cell research has enabled an international team to discover a new type of diabetes in babies.

The University of Exeter Medical School worked with Université Libre de Bruxelles (ULB) in Belgium and other partners to establish that mutations in the TMEM167A gene are responsible for a rare form of neonatal diabetes.

Some babies develop diabetes before the age of six months. In over 85 per cent of cases this is due to genetic mutation in their DNA. Research led by the University of Exeter found that in six children with additional neurological disorders such as epilepsy and microcephaly identified alterations in a single gene: TMEM167A.

To understand its role, ULB researcher Professor Miriam Cnop’s team used stem cells differentiated into pancreatic beta cells and gene-editing techniques (CRISPR). They found that when the TMEM167A gene is altered, insulin-producing cells can no longer fulfill their role. They then activate stress mechanisms that lead to their death.

New hope for MS

Micah Feri (left) and Seema Tiwari-Woodruff.
Photo Credit: Courtesy of University of California, Riverside

Multiple sclerosis, or MS, is a chronic autoimmune disease affecting more than 2.9 million people worldwide. It occurs when the immune system mistakenly attacks the myelin sheath, the protective insulation around nerve fibers, causing disruption of nerve signals between the brain and body. Symptoms can include numbness, tingling, vision loss, and paralysis.

While current treatments can reduce inflammation, no therapies yet exist to protect neurons or restore the damaged myelin sheath. Researchers have now taken a major step forward in the development of such a therapy, supported by funding from the National Multiple Sclerosis Society. They have identified two compounds that could remyelinate damaged axons.

Published in the journal Scientific Reports, the research, led by Seema Tiwari-Woodruff, a professor of biomedical sciences at the University of California, Riverside, School of Medicine, and John Katzenellenbogen, a professor of chemistry at the University of Illinois Urbana-Champaign, or UIUC, was made possible through two National MS Society funding programs: a traditional investigator-initiated grant and the Society’s Fast Forward commercial accelerator program.

Raging winds on Mars

Images of dust devils, whirlwinds of dust that are blown across Mars’ surface.
Image Credit: ESA/TGO/CaSSIS for CaSSIS
(CC BY SA 3.0 IGO)

On Mars, dust devils and winds reach speeds of up to 160 km/h and are therefore faster than previously assumed: This shows a study by an international research team led by the University of Bern. The researchers analyzed images taken by the Bernese Mars camera CaSSIS and the stereo camera HRSC with the help of machine learning. The study provides a valuable data basis for a better understanding of atmospheric dynamics, which is important for better climate models and future Mars missions.

Despite the very thin Martian atmosphere, there are also winds on Mars that are central to the climate and the distribution of dust. The wind movements and the whirling up of dust also create so-called dust devils, rotating columns of dust and air that move across the surface. In images of Mars, the wind itself is invisible, but dust devils are clearly visible. Due to their movement, they are valuable indicators for researchers to determine the otherwise invisible winds.

Heatwaves at Sea May Force the Ocean to Release More CO2

Marine heatwaves are disrupting the ocean’s ability to store carbon
Image Credit: Scientific Frontline / AI generated

Heatwaves not only occur on land – they also occur in the oceans, causing ocean temperatures to stay warmer than normal for longer periods. Marine heatwaves can cover huge areas of the sea and have major effects on marine life, from plankton to reefs and whales.

Now, a new study shows that marine heatwaves may also affect how carbon is stored in the ocean.

The ocean is one of Earths biggest carbon sinks. It soaks up vast amounts of CO2 from the atmosphere, and in the surface water, algae and other photosynthetic microorganisms capture it and convert it to organic carbon. When these organisms die and sink to the bottom, the carbon sinks with them. In the deep ocean, the removed carbon can be locked away for hundreds, even thousands of years.

Researchers discover enlarged areas of the spinal cord in fish, previously found only in four-limbed vertebrates

Zebrafish at the Laboratory of Fish Biology in Nagoya University Researchers discovered that zebrafish have enlarged areas of the spinal cord, previously believed to exist only in four-limbed vertebrates.
 Photo Credit: Naoyuki Yamamoto

Four-limbed vertebrates, known as tetrapods, have two enlarged areas in their spinal cords. The two enlargements have a correlation with the forelimbs and hind limbs, respectively. These enlargements are thought to be caused by the complex muscular system and the rich sensory networks supplying nerves to the limbs.

Meanwhile, it was long thought that fish had no enlarged areas in their spinal cords due to the absence of limbs. However, a recent study by scientists from Nagoya University in Japan has revealed that zebrafish, in fact, have enlarged areas in their spinal cords, although these areas are not visible to the naked eye.

"We thought that fish also have spinal enlargements because they have paired pectoral and pelvic fins, which correspond to forelimbs and hind limbs in tetrapods, respectively," said  Naoyuki Yamamoto, a professor at Nagoya University's Graduate School of Bioagricultural Sciences and the lead author of the study.

Changes in gut microbiota influence which patients get AIG-related neuroendocrine tumors

Researchers took biopsies of AIG patients with and without neuroendocrine tumor growth to understand their bacterial communities
Image Credit: Osaka Metropolitan University

Researchers from Osaka Metropolitan University have discovered how the balance of bacteria in the stomach affects the growth of neuroendocrine tumors (NETs). By identifying the specific bacteria involved and the biochemical reactions that cause tumor growth, the researchers hope to create a new diagnostic technique to detect which patients are most likely to develop cancer.

Autoimmune gastritis (AIG) is a long-term condition in which the body’s immune system mistakenly attacks the lining of the stomach. This ongoing immune response gradually damages the stomach, affecting how it functions and its ability to protect itself from harmful agents. Over time, these changes can increase the risk of developing NETs, a type of tumor that develops from hormone-producing cells in the stomach.

Tiny worms reveal big secrets about memory

Caenorhabditis elegans
Image Credit: Chew Lab

In a discovery that could reshape how we think about memory, researchers at Flinders University have found that forgetting is not just a glitch in the brain but is actually a finely tuned process, and dopamine is the key.

Led by neuroscientist Dr Yee Lian Chew and PhD student Anna McMillen, from Flinders Health and Medical Research Institute (FHMRI), the research team has shown that the brain actively forgets using the same chemical that helps us learn, dopamine.

Published in the Journal of Neurochemistry, the study used tiny worms called Caenorhabditis elegans – one millimetre long with only 300 neurons, yet 80% genetically identical to humans – to explore how memories fade.

These microscopic creatures might seem worlds apart from humans, but their brains share many of the same molecular pathways that makes them perfect for studying brain pathways including memory.

Featured Article

Major new study discovers diet and migratory behavior shape neophobia

Flamingos were one of the species to exhibit the highest neophobia. Photo Credit:  Jeffrey Hamilton The largest-ever study on neophobia, or ...

Top Viewed Articles