. Scientific Frontline

Monday, October 13, 2025

Kiwis could help manage chronic constipation

Photo Credit: Tom Paolini

Kiwifruits, rye bread and high mineral-content water could all help alleviate chronic constipation.

That’s according to the first ever evidence-based dietary guidelines for adults with chronic constipation, led by researchers at King’s College London.

The new guidelines also show that taking psyllium fibre supplements, certain probiotic strains and magnesium oxide supplements can help to improve constipation.

In contrast, other widely recommended approaches, including generic “high-fiber diets,” and senna supplements (a type of laxative) were found to lack strong evidence of effectiveness.

Large Genetic Study Links Cannabis Use to Psychiatric, Cognitive and Physical Health

The study uncovered new relationships between gene variants associated with cannabis use and psychiatric, cognitive and physical health.
Image Credit: Scientific Frontline / AI generated

University of California San Diego of Medicine researchers, in collaboration with the genetic testing company 23andMe, have identified regions of the human genome associated with cannabis use, uncovering new relationships with psychiatric, cognitive and physical health. The findings may inform the development of prevention and treatment strategies for cannabis use disorder. The study was published on October 13, 2025 in Molecular Psychiatry.

“Cannabis is widely used, but its long-term effects on health remain poorly characterized,” said Sandra Sanchez-Roige, Ph.D., associate professor of psychiatry at UC San Diego School of Medicine and senior author of the study. The researchers were also interested in the relationship between genetics and traits that contribute to the development of cannabis use disorder, which can interfere with a person’s daily life.

“While most people who try cannabis do not go on to develop cannabis use disorder, some studies estimate that nearly 30% will,” said Sanchez-Roige. “Understanding the genetics of early-stage behaviors may help clarify who is at greater risk, opening the door to prevention and intervention strategies.”

New lab-grown human embryo model produces blood cells

Video Credit: University of Cambridge

Researchers have found a new way to produce human blood cells in the lab that mimics the process in natural embryos. Their discovery holds potential to simulate blood disorders like leukemia, and to produce long-lasting blood stem cells for transplants.

University of Cambridge scientists have used human stem cells to create three-dimensional embryo-like structures that replicate certain aspects of very early human development - including the production of blood stem cells.

Human blood stem cells, also known as hematopoietic stem cells, are immature cells that can develop into any type of blood cell, including red blood cells that carry oxygen and various types of white blood cells crucial to the immune system.

The embryo-like structures, which the scientists have named ‘hematoids’, are self-organizing and start producing blood after around two weeks of development in the lab - mimicking the development process in human embryos.

Sikorsky Converts BLACK HAWK® Into U-Hawk™, A Battle-Ready Autonomous UAS

By removing the cockpit, seats and crew stations, the Sikorsky S-70UAS™ U-Hawk™ helicopter becomes the first fully autonomous Black Hawk helicopter.
Photo Credit: Sikorsky, a Lockheed Martin company.

From concept to reality in 10 months, Sikorsky, a Lockheed Martin company, has transformed a UH-60L Black Hawk® helicopter into the S-70UAS™ U-Hawk™, a versatile autonomous unmanned aircraft system (UAS) that has 25% more cargo space than a typical Black Hawk. Sikorsky replaced the cockpit section with actuated clamshell doors and ramp, and swapped conventional flight controls with a third-generation, low-cost, fly-by-wire system integrated with MATRIX™ autonomy technology.

Ural Scientists Have Discovered Unknown Lichen Species in China

The discoveries were made during a large-scale expedition to the provinces of Gansu and Yunnan
Photo Credit: Courtesy of Ural Federal University

Scientists from UrFU Department of Biodiversity and Bioecology with their colleagues from Taizhou University (China) have discovered unknown lichen species in China. The samples were collected during a large-scale expedition in the provinces of Gansu and Yunnan. Scientists plan to publish a description of the new species in a scientific journal.

“We repeated two expeditions that took place 100 years ago. In the province of Yunnan, we explored the areas where an expedition led by the Austrian botanist, Heinrich von Handel-Mazzetti, was conducted in 1914-1916. In Gansu province, we collected material on the route of the Sino-Swedish expedition led by Sven Hedin in 1927-1935,” said Alexander Paukov, a member of the expedition and professor at UrFU Department of Biodiversity and Bioecology.

Understanding volcanoes better

Oldoinyo Lengai in Tanzania is the only active carbonatite volcano on Earth.
Photo Credit: © Miriam Reiss

How do volcanoes work? What happens beneath their surface? What causes the vibrations – known as tremor – that occur when magma or gases move upward through a volcano's conduits? Professor Dr. Miriam Christina Reiss, a volcano seismologist at Johannes Gutenberg University Mainz (JGU), and her team have located such tremor signals at the Oldoinyo Lengai volcano in Tanzania. "We were not only able to detect tremor, but also to determine its exact position in three dimensions – its location and depth below the surface," said Reiss. "What was particularly striking was the diversity of different tremor signals we detected." The findings provide new insights into how magma and gas are transported within the Earth and thus improve our understanding of volcanic dynamics. This also has societal relevance as the researchers hope that their work will enhance the ability to forecast volcanic eruptions in the long term. Their results have recently been published in Communications Earth & Environment.

New research reveals the secret to ancient fish scales’ survival

Diplomystus dentatus, Fossil-Lake, Wyoming, USA
Photo Credit: Didier Descouens
(CC BY-SA 4.0)

A Curtin University-led international study has solved the mystery of how the skin of a fossilized fish was able to be preserved for 52 million years, extending our understanding of how even the most delicate of biological material can survive deep in time.

Published in Environmental Microbiology, the research examined a remarkably well-preserved specimen of Diplomystus dentatus complete with fossilized skin and scales, found in the ‘Fossil Basin’ region of Wyoming in the United States of America.

Despite being in an oxygen elevated micro-environment which would normally cause tissues to decay, the team discovered the initial degradation of the fish’s fatty skin also led to an environment where phosphate minerals could form and rapidly replace organic material – leading to fossilization.

As the skin broke down, it released fatty acids and hydrogen ions, altering the surrounding chemistry in a way that favored phosphate preservation by effectively blocking the usual carbonate deposits which would have otherwise caused the tissues to decay.

A new system can dial expression of synthetic genes up or down

MIT engineers developed a way to set gene expression levels at off, low, or high. Using skin cells, the researchers delivered a cocktail (labeled with a red fluorescent protein, top row) that boosts the conversion of skin cells into motor neurons. Via promoter editing, they show that higher levels of this cocktail increase the number of motor neurons (green). In the bottom row, the same cells are labeled with a green fluorescent protein that is generated after the cells convert to motor neurons.
Image Credit: Courtesy of the researchers
(CC BY-NC-ND 4.0)

For decades, synthetic biologists have been developing gene circuits that can be transferred into cells for applications such as reprogramming a stem cell into a neuron or generating a protein that could help treat a disease such as fragile X syndrome.

These gene circuits are typically delivered into cells by carriers such as nonpathogenic viruses. However, it has been difficult to ensure that these cells end up producing the correct amount of the protein encoded by the synthetic gene.

To overcome that obstacle, MIT engineers have designed a new control mechanism that allows them to establish a desired protein level, or set point, for any gene circuit. This approach also allows them to edit the set point after the circuit is delivered.

“This is a really stable and multifunctional tool. The tool is very modular, so there are a lot of transgenes you could control with this system,” says Katie Galloway, an assistant professor in Chemical Engineering at MIT and the senior author of the new study.

Deciphering the mechanisms of genome size evolution

The sequencing of the genomes of a spider from the mainland (Dysdera catalonica, left) and one from the Canary Islands (Dysdera tilosensis, left) opens a new perspective for understanding how genome size evolves in similar species, an enigma that has baffled the scientific community for years.
Photo Credit: Courtesy of University of Barcelona

This study contradicts the more traditional evolutionary view — on island-colonizing species, whose genomes are larger and often have more repetitive elements — and expands the scientific debate on a major puzzle in evolutionary biology: how and why does genome size change during the evolution of living beings?

The study is led by Julio Rozas and Sara Guirao, experts from the Faculty of Biology and the Biodiversity Research Institute (IRBio) of the University of Barcelona. The paper, whose first author is Vadim Pisarenco (UB-IRBio), also involves teams from the University of La Laguna, the Spanish National Research Council (CSIC) and the University of Neuchâtel (Switzerland).

This research offers a surprising perspective to explain a phenomenon that has puzzled scientists for decades: the size of the genome — the total number of DNA base pairs encoding an organism’s genetic information — varies enormously between species, even those with similar biological complexity.

The Red Sea Went Completely Dry Before Being Flooded by the Indian Ocean

 KAUST scientists have determined a rapid flood more than 6 million years ago radically changed the Red Sea and all its marine life.
Photo Credit: Francesco Ungaro

KAUST researchers find the Red Sea experienced a massive disruption 6.2 million years ago completely changing its marine life 

Scientists at King Abdullah University of Science and Technology (KAUST) have provided conclusive evidence that the Red Sea completely dried out about 6.2 million years ago, before being suddenly refilled by a catastrophic flood from the Indian Ocean. The findings, published in Communications Earth & Environment, put a definitive time on a dramatic event that changed the Red Sea. 

Using seismic imaging, microfossil evidence, and geochemical dating techniques, the KAUST researchers showed that a massive change happened in about 100 000 years – a blink of an eye for a major geological event. The Red Sea went from connecting with the Mediterranean Sea to an empty, salt-filled basin. Then, a massive flood burst through volcanic barriers to open the Bab el-Mandab strait and reconnect the Red Sea with the world’s oceans. 

“Our findings show that the Red Sea basin records one of the most extreme environmental events on Earth, when it dried out completely and was then suddenly reflooded about 6.2 million years ago,” said lead author Dr. Tihana Pensa of KAUST. “The flood transformed the basin, restored marine conditions, and established the Red Sea’s lasting connection to the Indian Ocean.” 

Featured Article

Major new study discovers diet and migratory behavior shape neophobia

Flamingos were one of the species to exhibit the highest neophobia. Photo Credit:  Jeffrey Hamilton The largest-ever study on neophobia, or ...

Top Viewed Articles