. Scientific Frontline

Wednesday, October 15, 2025

Locking carbon in trees and soils could ‘stabilize climate for centuries’ – but only if combined with underground storage

Photo Credit: Veronica Lorine

Research on a ‘portfolio approach’ to carbon removal enables firms to mix expensive tech-based solutions that inject carbon deep underground with lower-cost and currently more available nature-based options, such as forests and biochar. 

A team of researchers, led by Cambridge University, has now formulated a method to assess whether carbon removal portfolios can help limit global warming over centuries.

The approach also distinguishes between buying credits to offset risk versus claiming net-negative emissions.

The study paves the way for nature-based carbon removal projects – such as planting new forests or restoring existing ones – to become effective climate change solutions when balanced with a portfolio of other removal techniques, according to researchers.

They say the findings, published in the journal Joule, show how nature-based and technology-based carbon storage solutions can work together through the transition to net zero, challenging the notion that only permanent tech-based “geological storage” can effectively tackle climate change.

Did Lead Limit Brain and Language Development in Neanderthals and Other Extinct Hominids?

UC San Diego researchers have found high levels of lead in the teeth of both Neanderthals (left) and modern humans (right). However, a gene mutation may have protected modern human brains, allowing language to flourish.
Photo Credit: Kyle Dykes/UC San Diego Health Sciences

Ancient human relatives were exposed to lead up to two million years ago, according to a new study. However, a gene mutation may have protected modern human brains, allowing language to flourish.

What set the modern human brain apart from our now extinct relatives like Neanderthals? A new study by University of California San Diego School of Medicine and an international team of researchers reveals that ancient hominids — including early humans and great apes — were exposed to lead earlier than previously thought, up to two million years before modern humans began mining the metal. This exposure may have shaped the evolution of hominid brains, limiting language and social development in all but modern humans due to a protective genetic variant that only we carry. The study was published in Science Advances.

The researchers analyzed fossilized teeth from 51 hominids across Africa, Asia and Europe, including modern and archaic humans such as Neanderthals, ancient human ancestors like Australopithecus africanus, and extinct great apes such as Gigantopithecus blacki.

Researchers uncover possible new treatment to target a devastating childhood brain cancer

Professor Peter Lewis
Photo Credit: Courtesy of University of Wisconsin–Madison

Using fruit flies, University of Wisconsin–Madison researchers have developed a new model for investigating the genetic drivers of a rare but aggressive brain tumor in children. The work has already identified potential treatment targets for the deadly cancer that has previously had few therapeutic options.

“Right now, these tumors are incurable, and the standard of care hasn’t changed for 30 years,” says Peter Lewis, a professor in the Department of Biomolecular Chemistry.

The cancer is called pediatric diffuse midline glioma. As its name suggests, the malignancy arises along the midline of the brain or spinal cord and infiltrates surrounding tissue in a way that makes it impossible to remove with surgery. Instead, typical treatment revolves around radiation therapy, and that extends a patient’s life by just months or at most a few years.

Professor Peter Lewis: “What we found might extend well beyond these very rare childhood tumors into more common ones.”

The limited treatment options have driven researchers to more closely examine the genetic mutations that cause the cancer to develop in the first place, with an eye on finding ways to disrupt that process. 

In the case of diffuse midline glioma, previous research identified mutations in certain DNA-packaging proteins as a likely culprit.

African Wildlife Poop Sheds Light on What Shapes the Gut Ecosystem

Photo Credit: James C. Beasley

A study of elephants, giraffes and other wildlife in Namibia’s Etosha National Park underscores the ways in which the environment, biological sex, and anatomical distinctions can drive variation in the gut microbiomes across plant-eating species. Because the gut microbiome plays a critical role in animal health, the work can be used to inform conservation efforts.

“This study is valuable because Etosha gave us the opportunity to sample such a large number of species under different environmental conditions,” says Erin McKenney, co-author of a paper on the work and an assistant professor of applied ecology at North Carolina State University. “That gives us meaningful insight into the role the environment plays in shaping the gut microbiome of herbivores.

“Unfortunately, this study may also be important for a second reason,” McKenney says. “Etosha is experiencing devastating wildfires affecting a huge section of the park. Because our samples were taken before the wildfires, these findings could inform recovery efforts by helping us understand how species’ microbiomes are adjusting to changes in diet that stem from the fire’s impact on the landscape.”

Major new study discovers diet and migratory behavior shape neophobia

Flamingos were one of the species to exhibit the highest neophobia.
Photo Credit: Jeffrey Hamilton

The largest-ever study on neophobia, or fear of novelty, has discovered the key reasons why some bird species are more fearful of new things than others.

Published in the journal PLOS Biology, the global multi-species study was led by the University of Exeter’s Dr Rachael Miller while at Anglia Ruskin University (ARU), and the University of Cambridge – with ARU funding the publication of the research – alongside a core leadership team from the ManyBirds Project.

Neophobia plays a crucial role in how animals balance risk and opportunity. While caution can protect individuals from potential threats, it can also limit their ability to adapt to new nesting sites, foods or changes in the environment.

The research involved 129 collaborators from 82 institutions. Testing, and other associated research tasks, took place in 24 countries across six continents – including lab, field and zoo sites – and investigated why some birds are more cautious than others when encountering unfamiliar objects when feeding.

Checkpoint Inhibitor Promotes Tissue Repair

The illustration shows the mechanism of action of immune checkpoint inhibitors: antibodies (yellow) activate T cells (blue) enabling them to recognize and attack tumor cells (purple) more effectively. At the same time, checkpoint inhibitors accelerate tissue healing.
Image Credit: Scientific Frontline / AI generated

The body employs a protective mechanism that curbs overzealous immune responses. Known as checkpoint inhibitors, this natural braking system is located on the surface of certain immune cells. Cancer therapy often disables these inhibitors so that the immune system can fight tumor cells more effectively.

Previous observations showed that one of these inhibitors, known as TIGIT, provides a certain level of protection against tissue damage in mice infected with viruses. “We suspected that TIGIT also has something to do with tissue repair. However, the underlying mechanisms were completely unknown until now,” says Nicole Joller, Professor of Immunology at the Department of Quantitative Biomedicine at the University of Zurich (UZH). Joller’s team recently identified the signaling pathway that TIGIT uses to promote tissue repair.

Each fossil fuel project linked to additional global warming

Photo Credit: Roman Khripkov

Individual fossil fuel projects can no longer be considered too small to matter according to new Australian research linking each new investment in coal and gas extraction with measurable increases in global temperatures.

Published in the Nature journal Climate Action, climate scientists from six Australian universities, including the University of Melbourne, have revealed findings that debunk claims individual fossil fuel projects have little impact on global warming.

The research led by the ARC Centre of Excellence for the Weather of the 21st Century focused on the Scarborough gas project in Northwest Australia. It found that the project alone is estimated to lead to an increase of approximately 0.00039°C in global temperature from 876 million tons of CO2 emissions.

University of Melbourne Associate Professor Andrew King from the School of Geography, Earth and Atmospheric Sciences explained that while 0.00039°C of additional warming may seem relatively small, its impacts on society and the environment are actually large.

“This degree of warming could expose over half a million people to unprecedented extreme heat,” Associate Professor King said.

Physicists probe quark‑gluon plasma temperatures, helping paint more detailed picture of big bang

Frank Geurts is a professor of physics and astronomy at Rice and co-spokesperson of the RHIC STAR collaboration.
Photo Credit: Jeff Fitlow/Rice University.

A research team led by Rice University physicist Frank Geurts has successfully measured the temperature of quark-gluon plasma (QGP) at various stages of its evolution, providing critical insights into a state of matter believed to have existed just microseconds after the big bang, a scientific theory describing the origin and evolution of the universe. 

The study addresses the long-standing challenge of measuring the temperature of matter under extreme conditions where direct access is impossible. By using thermal electron-positron pairs emitted during ultrarelativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in New York, the researchers have decoded the thermal profile of QGP. 

Temperature measurements existed previously but have been plagued by several complications such as whether they were of the QGP phase or biased by a Doppler-like effect from the large velocity fields pushing such effective temperatures.

“Our measurements unlock QGP’s thermal fingerprint,” said Geurts, a professor of physics and astronomy and co-spokesperson of the RHIC STAR collaboration. “Tracking dilepton emissions has allowed us to determine how hot the plasma was and when it started to cool, providing a direct view of conditions just microseconds after the universe’s inception.” 

A promising target for multiple sclerosis

The image depicts a neuron with its axon insulated by segments of the myelin sheath. The visible degradation and fragmentation of that sheath represent the demyelination process that is characteristic of multiple sclerosis. This process disrupts the neuron's ability to transmit signals efficiently, leading to the neurological symptoms associated with the condition.
Image Credit: Scientific Frontline / AI generated

A team from UNIGE and HUG has discovered a subgroup of immune cells particularly involved in the disease, paving the way for more precise treatments and avoiding certain side effects.

Multiple sclerosis, which affects around one in 500 people in Switzerland, is an autoimmune disease in which immune cells attack the central nervous system, causing irreversible damage. Current treatments involve blocking the immune system to prevent it from attacking the body. Although effective, these drugs can trigger potentially serious infections. A team from the University of Geneva (UNIGE) and Geneva University Hospitals (HUG), in collaboration with the University of Pennsylvania, has identified a subtype of immune cells in newly diagnosed patients that may have a decisive role in disease progression.  A treatment targeting these cells specifically could effectively control the disease while avoiding certain side effects. These findings have been published in the journal Annals of Neurology.

Tuesday, October 14, 2025

Metamaterials can stifle vibrations with intentional complexity

This 3-D printed “kagome tube” can passively isolate vibrations using its complex, but deliberate, structure.
Image Credit: James McInerney, Air Force Research Laboratory

In science and engineering, it’s unusual for innovation to come in one fell swoop. It’s more often a painstaking plod through which the extraordinary gradually becomes ordinary.

But we may be at an inflection point along that path when it comes to engineered structures whose mechanical properties are unlike anything seen before in nature, also known as mechanical metamaterials. A team led by researchers at the University of Michigan and the Air Force Research Laboratory, or AFRL, have shown how to 3D print intricate tubes that can use their complex structure to stymy vibrations.

Such structures could be useful in a variety of applications where people want to dampen vibrations, including transportation, civil engineering and more. The team’s new study, published in the journal Physical Review Applied, builds on decades of theoretical and computational research to create structures that passively impede vibrations trying to move from one end to the other.

Featured Article

Major new study discovers diet and migratory behavior shape neophobia

Flamingos were one of the species to exhibit the highest neophobia. Photo Credit:  Jeffrey Hamilton The largest-ever study on neophobia, or ...

Top Viewed Articles