. Scientific Frontline

Thursday, April 7, 2022

Are people more willing to empathize with animals or with other humans?

Credit: Photo by David Clode on Unsplash
Stories about animals such as Harambe the gorilla and Cecil the lion often sweep the media as they pull at people’s heartstrings. But are people more likely to feel empathy for animals than humans?

A new Penn State study led by Daryl Cameron, associate professor of psychology and senior research associate at Rock Ethics Institute, found that the answer is complicated. The findings could have implications for how messaging to the public about issues like new environmental policies is framed, among others.

The researchers found that when people were asked to choose between empathizing with a human stranger or an animal — in this study, a koala bear — the participants were more likely to choose empathizing with a fellow human.

However, in a second pair of studies, the researchers had participants take part in two separate tasks: one in which they could choose whether or not they wanted to empathize with a person, and one in which they could choose whether or not they wanted to empathize with an animal. This time, people were more likely to choose empathy when faced with an animal than when faced with a person.

Cameron said the findings — recently published in a special issue on empathy in the Journal of Social Psychology — suggest that when people are deciding whether to engage in empathy, context matters.

“It’s possible that if people are seeing humans and animals in competition, it might lead to them preferring to empathize with other humans,” Cameron said. “But if you don’t see that competition, and the situation is just deciding whether to empathize with an animal one day and a human the other, it seems that people don’t want to engage in human empathy but they're a little bit more interested in animals.”

Engineered crystals could help computers run on less power

Researchers at the University of California, Berkeley, have created engineered crystal structures that display an unusual physical phenomenon known as negative capacitance. Incorporating this material into advanced silicon transistors could make computers more energy efficient.
Credit: UC Berkeley image by Ella Maru Studio

Computers may be growing smaller and more powerful, but they require a great deal of energy to operate. The total amount of energy the U.S. dedicates to computing has risen dramatically over the last decade and is quickly approaching that of other major sectors, like transportation.

In a study published online this week in the journal Nature, University of California, Berkeley, engineers describe a major breakthrough in the design of a component of transistors — the tiny electrical switches that form the building blocks of computers — that could significantly reduce their energy consumption without sacrificing speed, size or performance. The component, called the gate oxide, plays a key role in switching the transistor on and off.

“We have been able to show that our gate-oxide technology is better than commercially available transistors: What the trillion-dollar semiconductor industry can do today — we can essentially beat them,” said study senior author Sayeef Salahuddin, the TSMC Distinguished professor of Electrical Engineering and Computer Sciences at UC Berkeley.

This boost in efficiency is made possible by an effect called negative capacitance, which helps reduce the amount of voltage that is needed to store charge in a material. Salahuddin theoretically predicted the existence of negative capacitance in 2008 and first demonstrated the effect in a ferroelectric crystal in 2011.

Most precise ever measurement of W boson mass to be in tension with the Standard Model

The Collider Detector at Fermilab recorded high-energy particle collisions produced by the Tevatron collider from 1985 to 2011. About 400 scientists at 54 institutions in 23 countries are still working on the wealth of data collected by the experiment.
Credit: Fermilab

After 10 years of careful analysis and scrutiny, scientists of the CDF collaboration at the U.S. Department of Energy’s Fermi National Accelerator Laboratory announced today that they have achieved the most precise measurement to date of the mass of the W boson, one of nature’s force-carrying particles. Using data collected by the Collider Detector at Fermilab, or CDF, scientists have now determined the particle’s mass with a precision of 0.01% — twice as precise as the previous best measurement. It corresponds to measuring the weight of an 800-pound gorilla to 1.5 ounces.

The new precision measurement, published in the journal Science, allows scientists to test the Standard Model of particle physics, the theoretical framework that describes nature at its most fundamental level. The result: The new mass value shows tension with the value scientists obtain using experimental and theoretical inputs in the context of the Standard Model.

“The number of improvements and extra checking that went into our result is enormous,” said Ashutosh V. Kotwal of Duke University, who led this analysis and is one of the 400 scientists in the CDF collaboration. “We took into account our improved understanding of our particle detector as well as advances in the theoretical and experimental understanding of the W boson’s interactions with other particles. When we finally unveiled the result, we found that it differed from the Standard Model prediction.”

World’s Largest International Dark Sky Reserve Created by McDonald Observatory

The Milky Way soars over the domes of McDonald Observatory's Mount Locke showcasing the region's dark skies.
Credit: Stephen Hummel/McDonald Observatory

The world’s largest International Dark Sky Reserve is coming to Texas and Mexico, thanks to a partnership between The University of Texas at Austin’s McDonald Observatory, The Nature Conservancy, the International Dark-Sky Association (IDA) and many others. The designation, granted by the IDA, recognizes the commitment of organizations, governments, businesses and residents in the region to maintaining dark skies. The move will benefit not only astronomical research, but also wildlife, ecology and tourism.

The new Greater Big Bend International Dark Sky Reserve will encompass more than 15,000 square miles in portions of western Texas and northern Mexico. It is the only such reserve to cross an international border.

“This reserve protects both the scientific research and public education missions of McDonald Observatory,” said Taft Armandroff, director of UT Austin’s McDonald Observatory. “Since 1939, the observatory has enabled the study of the cosmos by faculty, students and researchers at UT Austin and other Texas institutions of higher learning, with topics ranging from planets orbiting nearby stars to the accelerating expansion of the universe.”

Mini-Livers on a Chip

Researchers at Gladstone Institutes designed a new platform for studying how the human immune system responds to hepatitis C infection by combining microfluidic technology with liver organoids. Credit: Gladstone Institutes

A vaccine for hepatitis C has eluded scientists for more than 30 years, for several reasons. For one, the virus that causes the disease comes in many genetic forms, complicating the creation of a widely effective vaccine. For another, studying hepatitis C has been difficult because options in animals are limited and lab methods using infected cells have not adequately reflected the real-life dynamics of infection.

Now, researchers at Gladstone Institutes have developed a new platform for studying how the human immune system responds to hepatitis C infection. The method, presented in the scientific journal Open Biology, marries microfluidic technology (which allows scientists to precisely manipulate fluid at a microscopic scale) with liver organoids (three-dimensional cell clusters that mimic the biology of real human livers).

“The 3D structure and cellular composition of liver organoids allows us to study viral entry and replication in a highly relevant physiological manner,” says Gladstone Senior Investigator Todd McDevitt, PhD, a senior author of the new study.

“Our approach enables a more controlled and accurate investigation into the immune response to hepatitis C infection,” says Melanie Ott, MD, PhD, director of the Gladstone Institute of Virology and another senior author of the study. “We hope our method will accelerate the discovery of a much-needed vaccine.”

Lung surfactants that could lead to better treatments for respiratory illnesses

The above video shows fluorescent microscopy footage of the finger-like crystalline structures of lung surfactant monolayers, which the researchers showed elongate with an increase in pressure.
Credit: Zasadzinski Research Lab, University of Minnesota

A team led by University of Minnesota Twin Cities engineering researchers analyzed the fundamental properties and structures of lung surfactant—a naturally occurring substance that helps human and animal lungs expand and contract—providing insight that could eventually help scientists develop better treatments for respiratory illnesses.

The paper is published in Science Advances, a peer-reviewed, multidisciplinary scientific journal published by the American Association for the Advancement of Science.

Both human and animal lungs naturally produce a surfactant, a substance consisting of lipids and proteins that coats the lungs and decreases the surface tension as we inhale and exhale, making it easier to breathe.

Respiratory illnesses like pneumonia or COVID-19 can impede the lung surfactant from working properly, leading to complications in breathing. A similar issue occurs in pre-term babies, who sometimes haven’t yet developed the ability to produce the substance and suffer from Neonatal Respiratory Distress Syndrome. Right now, treatments consist of giving humans replacement surfactant taken from animal lungs, but researchers have been working to create synthetic surfactants to treat these conditions for years.

Discovery of Matter-Wave Polaritons Sheds New Light on Photonic Quantum Technologies

An artistic rendering of the research findings in the polariton study shows the atoms in an optical lattice forming an insulating phase (left); atoms turning into matter-wave polaritons via vacuum coupling mediated by microwave radiation represented by the green color (center); polaritons becoming mobile and forming a superfluid phase for strong vacuum coupling (right).
Photo Credit: Alfonso Lanuza/Schneble Lab/Stony Brook University.

The development of experimental platforms that advance the field of quantum science and technology (QIST) comes with a unique set of advantages and challenges common to any emergent technology. Researchers at Stony Brook University, led by Dominik Schneble, PhD, report the formation of matter-wave polaritons in an optical lattice, an experimental discovery that enables studies of a central QIST paradigm through direct quantum simulation using ultracold atoms. The researchers project that their novel quasiparticles, which mimic strongly interacting photons in materials and devices but circumvent some of the inherent challenges, will benefit the further development of QIST platforms that are poised to transform computing and communication technology.

The findings are detailed in a paper published in Nature Physics.

The research sheds light on fundamental polariton properties and related many-body phenomena, and it opens up novel possibilities for studies of polaritonic quantum matter.

An important challenge in work with photon-based QIST platforms is that while photons can be ideal carriers of quantum information they do not normally interact with each other. The absence of such interactions also inhibits the controlled exchange of quantum information between them. Scientists have found a way around this by coupling the photons to heavier excitations in materials, thus forming polaritons, chimera-like hybrids between light and matter. Collisions between these heavier quasiparticles then make it possible for the photons to effectively interact. This can enable the implementation of photon-based quantum gate operations and eventually of an entire QIST infrastructure.

Under Ocean Acidification, Embryos of a Key Forage Fish Struggle to Hatch

This photo shows sand lance embryos that have and have not hatched. Sand lance have trouble hatching at future ocean CO2 levels
Credit: Emma Cross.

When carbon is emitted into the atmosphere, about a quarter of it is absorbed by the earth’s oceans. As the oceans serve as a massive ‘sink’ for carbon, there are changes to the water’s pH – a measure of how acidic or basic water is. As oceans absorb carbon, their water becomes more acidic, a process called ocean acidification (OA). For years, researchers have worked to understand what effect this could have on marine life.

While most research so far shows that fish are fairly resilient to OA, new research from UConn, the University of Washington, the National Oceanic and Atmospheric Administration (NOAA), and Southern Connecticut State University, shows that an important forage fish for the Northwest Atlantic called sand lance is very sensitive to OA, and that this could have considerable ecosystem impacts by 2100. The team’s findings have just been published in Marine Ecology Progress Series.

Sand lance spawn in the winter months in offshore environments that tend to have stable, low levels of CO2, explains UConn Department of Marine Sciences researcher and lead author Hannes Baumann.

“Marine organisms are not living in a uniform ocean,” Baumann says. “In near shore environments, large CO2 fluctuations between day and night and between seasons are the norm, and the fish and other organisms are adapted to this variability. When we stumbled upon sand lances, we suspected they're different. We thought that a fish that lives in a more open-ocean offshore environment might be more sensitive than the near-shore fish because there’s just much less variability.”

Scientists Have Spotted the Farthest Galaxy Ever

HD1, object in red, appears at the center of a zoom-in image.
Credit: Harikane et al.
Hi-Res Zoomable Image

An international team of astronomers, including researchers at the Center for Astrophysics | Harvard & Smithsonian, has spotted the most distant astronomical object ever: a galaxy.

Named HD1, the galaxy candidate is some 13.5 billion light-years away and is described today in the Astrophysical Journal. In an accompanying paper published in the Monthly Notices of the Royal Astronomical Society Letters, scientists have begun to speculate exactly what the galaxy is.

The team proposes two ideas: HD1 may be forming stars at an astounding rate and is possibly even home to Population III stars, the universe’s very first stars — which, until now, have never been observed. Alternatively, HD1 may contain a supermassive black hole about 100 million times the mass of our Sun.

“Answering questions about the nature of a source so far away can be challenging,” says Fabio Pacucci, lead author of the MNRAS study, co-author in the discovery paper on ApJ, and an astronomer at the Center for Astrophysics. “It’s like guessing the nationality of a ship from the flag it flies, while being faraway ashore, with the vessel in the middle of a gale and dense fog. One can maybe see some colors and shapes of the flag, but not in their entirety. It’s ultimately a long game of analysis and exclusion of implausible scenarios.”

Insomnia could increase people’s risk of type 2 diabetes, study finds

People who have difficulty getting to sleep or staying asleep have higher blood sugar levels than people who rarely have sleep issues, new research has found. The University of Bristol-led findings suggest insomnia could increase people’s risk of type 2 diabetes, and that lifestyle or pharmacological treatments that improve insomnia could help to prevent or treat the condition.

The study, led by the University of Bristol, supported by the universities of Manchester, Exeter, and Harvard, and funded by Diabetes UK, is published in Diabetes Care.

Insomnia, not getting enough sleep, and having a later bedtime, have been linked in previous studies to a greater risk of type 2 diabetes. In this study, the research team assessed whether these associations are explained by causal effects of sleep traits on blood sugar levels

The researchers used a statistical technique called Mendelian Randomization to see how five sleep measures - insomnia, sleep duration, daytime sleepiness, napping and morning or evening preference (chronotype) - were related to average blood sugar levels assessed by a measure called HbA1c levels. Using Mendelian Randomization, which groups people according to a genetic code randomly assigned at birth, allowed the researchers to remove any bias from the results.

The study of over 336,999 adults living in the UK, showed that people who reported that they often had difficulty getting to sleep or staying asleep had higher blood sugar levels than people who said they never, rarely, or only sometimes had these difficulties. The research team found no clear evidence of an effect of other sleep traits on blood sugar levels.

The findings could improve researchers' understanding of how sleep disturbance influences type 2 diabetes risk. The study also suggests that lifestyle and/or pharmacological interventions that improve insomnia might help to prevent or treat diabetes.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles