As harmful algal blooms (HABs) continue to spread across the globe, urgent research is needed to address this growing threat. Studies in Italy, China, and the Atlantic basin have shown that many water bodies have high nitrogen-to-phosphorus ratios, making phosphorus a key factor that drives these blooms. This highlights the critical need for more effective phosphorus management strategies to curb the rise of HABs and protect our ecosystems.
Recently, there’s been a growing interest in finding useful ways to repurpose troublesome algal biomass, which could be turned into valuable products like bioplastics, biofertilizers, and biofuels. Researchers have already explored using algal biomass to create materials that can help clean up things such as heavy metals, rare earth metals, dyes, and even capture CO2 and harmful volatile organic compounds from the air.
However, few studies have looked into how algal biomass, especially cyanobacteria, also known as blue-green algae, can be used to create materials that remove phosphate from water.
Now, researchers from the College of Engineering and Computer Science at Florida Atlantic University, have filled that gap by transforming cyanobacterial biomass, which is typically a hazardous waste, into custom-made adsorbent materials that can pull harmful phosphorus out of water. A d sorbent materials are substances that can attract and hold molecules or particles such as gases, liquids, or dissolved solids on their surface. Unlike a b sorbent materials that soak up substances into their structure, a d sorbents capture molecules on the outside surface, forming a thin layer.